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Abstract

Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-
product regulation. Cellular redox homeostasis is considered to be an ‘‘integrator’’ of information from me-
tabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events.
The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular
antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to
participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low
molecular weight antioxidants, the ‘‘redox’’ states of components involved in photosynthesis such as plasto-
quinone show rapid and often transient shifts in response to changes in light and other environmental signals.
Whereas both types of ‘‘redox regulation’’ are intimately linked through the thioredoxin, peroxiredoxin, and
pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between
energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of
redox regulation, with discussion of the somewhat juxtaposed hypotheses of ‘‘oxidative damage’’ versus ‘‘oxi-
dative signaling,’’ within the wider context of physiological function, from plant cell biology to potential ap-
plications. Antioxid. Redox Signal. 11, 861–905.

I. Introduction

Cellular redox metabolism in humans and plants is
intimately linked through our consumption of the plant

foods that we cultivate and through human effects on the

natural environment and control of agricultural conditions.
Plant organs are often rich in antioxidants, some of which,
such as ascorbate and tocopherol, are essential vitamins in the
human diet. For many years, people have been urged to take
antioxidant supplements in the belief that this practice
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improves health and prevents disease. Recently, the routine
use of antioxidant supplements has become highly con-
troversial, as a number of comprehensive studies have dem-
onstrated that taking them is actually harmful because it
increases all-cause mortality (41). The negative effect of anti-
oxidants on human mortality can be explained by the fact that
reactive oxygen species (ROS) are essential to the well-being
of all organisms, including humans, and that an enhancement
of their elimination interferes with the essential mechanisms
for the creation and controlled eradication of cells that ensure
human health (41). Of these mechanisms, animal cell apo-
ptosis [or programmed cell death (PCD) in plants] is perhaps
the best characterized in terms of the central role of cellular
redox homeostasis.

Despite the fact that the antioxidant theory of health im-
provement has now been called into question, epidemiologi-
cal studies show that consumption of vegetables and fruit is
associated with improved vascular health, with decreased
risk of cancer, heart disease, and stroke (395). The answer to

the question of why the intake of plant foodstuffs promotes
human health appears to reside in the ability of plant me-
tabolites to regulate human gene transcription and to induce
endogenous defenses that counter carcinogenesis and the
development of high cholesterol and lipids. One way in
which dietary bioactive compounds can induce protective
gene expression is by the activation of transcription factor NF-
E2-related factor-2 (Nrf2; 395). Nrf2 binds to the ‘‘antioxidant
response element’’ (ARE) in the promoters of genes encod-
ing a battery of metabolic and defense enzymes (95) such as
g-glutamylcysteine synthetase (g-ECS), glutathione reductase
(GR), aldo-keto reductase, and glutathione transferases (GTs,
formerly known as glutathione S-transferases) and enzymes
of the pentose phosphate pathway, such as transketolase
and transaldolase, as well as components of the ubiquitin-
independent 20S proteasome that degrades damaged protein
(231, 379, 400).

In the absence of an appropriate signal, Nrf2 is held in the
cytosol in a complex with Kelch-like ECH-associated protein 1

FIG. 1. Two of the major pathways for
H2O2 metabolism in plants. Other en-
zymes such as thioredoxin or glutaredoxin-
linked peroxiredoxins and peroxidatic
glutathione transferases also contribute. In
particular, it should be noted that 2-cys
peroxiredoxins could be important in H2O2

metabolism in the chloroplast, as depicted
in Fig. 2 of Dietz et al. (87). APX, ascorbate peroxidase; DHAI, dehydroascorbate (reductase); GR, glutathione reductase; GSH,
glutathione; GSSG, glutathione disulfide; MDHAI, monodehydroascorbate (reductase).
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FIG. 2. Simple summary of principal chemical species of oxygen (A) and the two main paths of oxygen reduction (B).
The scheme shows only the main forms thought to exist under physiological conditions. Protonated forms of superoxide and
deprotonated forms of H2O2 also exist. The relative reactivities of the different ROS are denoted by asterisks in (A). The term
‘ROS’ refers to any triplet oxygen species that is more reactive than O2; a radical is defined as a molecule carrying an unpaired
electron; an ion refers to a compound that carries a charge (i.e., its total number of electrons is not equal to its total number of
protons).
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(Keap1). Keap1 is a substrate adaptor protein for the Cullin-3
(Cul3)-dependent E2 ubiquitin ligase complex, directing Nrf2
for proteasomal degradation (132). Phosphorylation of Keap1
or oxidation of Keap1 Cys residues diminishes its affinity for
Nrf2 which is then released (395). Once released, Nrf2 is
translocated to the nucleus where it binds to AREs and in-
creases protective gene expression. Both the Nrf2-Keap1 and
Keap1-Cul3 interaction have been observed in several cell
types (59, 207, 339). The elicitation of Nrf2-dependent or-
chestration of defense metabolism by plant compounds pro-
vides a much wider range of protection than that offered by
increased antioxidant capacity alone. The protection offered
by enzyme-dependent detoxification processes is not only
more powerful than that potentially offered by antioxidant
supplement, but is also more durable, as metabolite accu-
mulation is limited by degradation and excretion. A wide
range of secondary metabolites in fruit and vegetables
act as ‘‘elicitors’’ that activate Nrf2. These include oxidized
omega-3 fatty acids, carotenoids, glucosinolate-derived
isothiocyanates and indoles, polyphenols, and allyl sulfides.
Regardless of how the plant signals are perceived, for ex-
ample, as pro-oxidants or xenobiotics, and the mechanisms
through which they enhance cellular resistance responses that
underpin health benefits, one is drawn to the conclusion that it
is crucial not only to understand the redox processes that
drive plant primary and secondary metabolism to produce
these metabolites in abundance but also the holistic relation-
ships between cellular redox homeostasis and plant growth
and development.

Significant drivers for research on redox processes in plants
have been the aims of achieving foods that are enriched in
classical low molecular weight antioxidants (tocopherol,
ascorbate, glutathione) and improving plant sustainability
and yield through enhanced stress tolerance. A key scientific
question concerns why plants accumulate such high amounts
of low-molecular-weight antioxidants, particularly ascorbate.
The answer lies in the complex web of processes in which
these metabolites participate, spanning growth and devel-
opment as well as defense. Historically, ascorbate and glu-
tathione have been described largely as the crucial players
in a high-capacity plant enzymatic recycling system that
functions, together with catalases (CAT), to metabolize H2O2

(Fig. 1). For basic information on these processes, we invite the
reader to consult our earlier reviews (114, 116–119, 121, 125,
127, 291, 292) and those of others (14–16, 22, 33, 86, 265, 273,
275, 381, 382). Here, we discuss some of the pertinent ad-
vances and essential features of the ROS=antioxidant rela-
tionship in plants, with references where appropriate to other
recent authoritative reviews on particular aspects. The dis-
cussion is presented against the backdrop of the ongoing
debate over the relative importance of the concepts of ‘‘dam-
age’’ and ‘‘signaling.’’

II. The Plant Paradigm of Redox Control and Signaling:
At the Heart of Plant Physiology

A. Oxygen chemistry: The basics

1. Univalent reduction of oxygen. The global wheel of
oxidation–reduction (redox) systems by which present-day
living organisms store and release energy was set in motion
by the evolution of oxygenic photosynthesis (7). Photo-
synthetic organisms created the oxygen-rich atmosphere of

the earth, and then tackled the problems of living with oxy-
gen, finding a use for what was originally oxidative ‘‘damage’’
to proteins, lipids, and DNA in signaling, in the form of redox
cues, the impact of a changing environment on metabolism. It
is estimated that prokaryotic oxygen-evolving ancestors of the
plant chloroplast first appeared between 3.4 and 2.3 billion
years ago (7) and initiated the oxygen-rich atmosphere of the
earth today, unique among the planets of our solar system. As
a result, molecular oxygen became intimately involved with
the essential energy exchange reactions on which life is based,
allowing the routine and widespread use of the high electro-
chemical potential (Em7¼þ 815 mV) of the O2=H2O redox
couple as a terminal electron acceptor by respiratory oxidases.
A key feature of these oxidases, and other enzymes such as
ascorbate oxidase, is that they reduce O2 to water through a
tetravalent pathway that does not involve the release of re-
active, partially reduced intermediates (Fig. 2). Likewise, the
photosystem (PS) II water-splitting system of photosynthesis
undertakes the concerted four-electron oxidation of water
without the release of ROS. However, many processes in
plants catalyze only partial reduction of oxygen and produce
superoxide, H2O2, and hydroxyl radicals, all of which are
more reactive than ground state triplet O2 (Fig. 2). While su-
peroxide production by autoxidation of PSII components has
been discussed (15, 16), it is generally accepted that PSI is the
major site of superoxide generation in the photosynthetic
electron transport (PET) chain.

Superoxide production at PSI can be greatly enhanced by
the pro-oxidant herbicide methyl viologen (paraquat), which
acts as a cycling catalyzer of electron transfer from PSI FeS
centers to O2 (Fig. 3). Exposing leaves to paraquat leads to
rapid shrinkage of the tissue associated with PCD, as illus-
trated in Fig. 3. It is important to note that the term PCD
covers a wide range of processes in plants, but these are dis-
tinct from necrosis in that they involve cell shrinkage in a
physiological process with hallmark characteristics, as dis-
cussed in relation to the role of ROS by Garmier et al. (136). In
contrast to PCD, necrosis is a pathological process that occurs
when cells are exposed to a physical or chemical wound or
insult; it involves rapid loss of membrane integrity, the cyto-
plasm and mitochondria swell and cell lysis occurs.

2. Singlet oxygen. As well as being activated by reduc-
tion, ground-state triplet O2 can be rendered much more re-
active by photodynamic processes that modify the electron
configuration of the O2 molecule to produce singlet oxygen
(150). Significant production of singlet oxygen can occur in
all living organisms through various mechanisms but is par-
ticularly prominent in the chloroplast because of the rou-
tine formation of excited pigments in photosynthesis (127).
Though less reactive than the hydroxyl radical, singlet oxygen
is more reactive than both superoxide and H2O2, and was
considered for many years as a highly toxic molecule with
very limited diffusion. Recent evidence suggests, however,
that singlet oxygen might diffuse significant distances from its
site of production (109). Moreover, chloroplast lipid perox-
idation has been shown to be almost exclusively mediated by
singlet oxygen (407). Singlet oxygen, like H2O2, is involved in
cell signaling, leading to the execution of a cell suicide pro-
gram, although, as we discuss later, these two ROS may op-
erate in an antagonistic fashion in the regulation of gene
expression (14).
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B. Redox poising and signaling from electron
transport chains

1. Redox turnover, homeostasis, and poising. In green
plant cells, the PET and respiratory electron transport (RET)
chains interact directly with the metabolic pathway of carbon
assimilation in a producer–consumer relationship with regard
to reducing power (reduced ferredoxin, NAD(P)H) and en-
ergy (ATP) (Fig. 4). The redox relationships of the chloroplast
with the rest of the cell (129) have many parallels with those of
the mitochondria. Together, the two major energy-producing
organelles of the plant cell interact to influence and regulate
cellular redox homeostasis.

A key theme of this review is that redox regulatory mech-
anisms in the membrane-bound and soluble phases are inti-
mately linked at multiple levels. However, it is important to

define the concepts underlying redox regulation and ho-
meostasis, and to distinguish between processes occurring in
electron transport chains and those that occur in the soluble
phase. Key notions are thermodynamics and kinetics. The
concept of ‘‘cellular redox homeostasis’’ applies to the soluble
phase, where the major redox couples (NADPH, ascorbate,
glutathione) turn over relatively slowly (seconds to minutes)
and are often considered to be maintained close to thermo-
dynamic equilibrium. A ‘‘cellular redox potential’’ of about
�250 to�300 mV is often assumed, though it remains unclear
whether soluble redox couples really are in equilibrium at
these values. Furthermore, both NADPH and ascorbate
functions are intimately associated with electron transport
chains, and the concept of strict redox homeostasis in the
soluble phase may be less applicable to photosynthetic or-
ganisms than to heterotrophic organisms that maintain a
near constant cellular temperature. In plants, PET operation
can affect the redox state of soluble components such as
NADP(H), to drive the induction of assimilatory metabo-
lism, and also that of stromal thioredoxins (372), to allow light
signaling that is essentially thermodynamically driven (i.e.,
the key factor is that certain thioredoxins are more reduced
in the light than the dark). In contrast, the overall redox state
of the ascorbate and glutathione pools is not significantly
changed as a result of the immediate impact of light on PET.
These ‘‘antioxidants’’ are generally maintained in a highly
reduced state, though this can change as a result of intensive
ROS production, for example, in the presence of a pro-oxidant
such as methyl viologen. Indeed, such ROS-induced changes
in ascorbate and=or glutathione status are often taken as in-
dicative of ‘‘oxidative stress’’.

In contrast to the relatively slow turnover and so more
slowly changing redox states of soluble redox couples, com-
ponents in the PET system generally have sub-second turn-
over rates. Since electron flux between components is driven
by large changes in redox potential, the concept of homeo-
stasis is less applicable because redox states can change rap-
idly depending on input and output. The PET system is
subject to fluctuations in light (input) and in temperature
(which are an important determinant of the capacity for use of
output, i.e., ATP and NADPH). Nevertheless, PET redox sta-
tus is not simply the outcome of thermodynamics. Numerous
regulatory mechanisms operate to ensure that both oxidized
and reduced forms of components are simultaneously pres-
ent. This balancing act is known as ‘‘redox poising’’ and is
necessary to avoid inhibition of flux by bottlenecks. Feed-
forward and feedback mechanisms that coordinate PET ac-
tivity and metabolism have been studied for many years.
These concepts include light activation of photosynthetic
metabolism by thioredoxins (442), photosynthetic control
over electron transport (120), and DpH-dependent regulation
of light harvesting efficiency (78, 293). Recent work suggests
that NADP(H) status could also feed back to regulate elec-
tron transport rates (155). The reduction state or redox poise
of PET components such as the plastoquinone pool and the
cytochrome b6f complex is important not only in determin-
ing short-term acclimatory mechanisms such as ‘‘state tran-
sitions’’, and the amount of light energy that is dissipated as
heat, but it is also instrumental in initiating signal cascades
that regulate gene expression (174, 353).

In addition to the regulatory mechanisms mentioned above
and discussed further in the next Section, oxygen is a key

FIG. 3. Paraquat-induced tissue collapse in Arabidopsis
leaves. Paraquat (methyl viologen) is a very efficient accep-
tor of electrons from the low potential iron–sulfur groups of
photosystem I and can out-compete electron acceptors such
as ferredoxin and NADPþ. This starves chloroplast metabo-
lism of reductant. Even more seriously, in the short-term, the
reduced paraquat radical promotes superoxide formation
through auto-oxidation by molecular oxygen. Paraquat is
thus a cycling catalyzer of superoxide formation. If the an-
tioxidative enzymes are unable to keep pace, superoxide and
derived species (Fig. 2) trigger cell death. CBF, cytochrome
b6f complex; Fd, ferredoxin; PET, photosynthetic electron
transport; PSI, photosystem I; PSII, photosystem II.
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player in preventing bottlenecks in the PET and RET chains.
Over-reduction of electron transport components favors
production of singlet oxygen and superoxide (which subse-
quently gives rise to H2O2 via reduction or dismutation).
Superoxide production plays a crucial role in redox poising,
as it acts as an electron overflow system, and was described
several decades ago as electron ‘‘leakage’’ to oxygen. This
term, which suggests malfunction or imperfect function, has
unfortunately become embedded in the literature. Moreover,
in the context of cell survival signaling, superoxide produc-
tion on the reducing side of PSI may serve to induce defense
gene expression and so offset the influence of singlet oxygen-
induced cell death signals (14). As discussed in detail below,
different ROS signals produced at various sites in the PET
chain have an inverse ‘‘balancing action,’’ on gene expression.

The above discussion emphasizes that although electron
transport chains and soluble redox couples in plants can be
distinguished on the basis of turnover rates, homeostasis, and
poising, they are nevertheless inextricably entwined. The re-
dox state of electron transport components is not determined
simply by thermodynamics (because of the influence of ho-
meostatic regulatory mechanisms) while that of the soluble
phase is not immune from thermodynamics (because the
impact of environmental changes can feed downstream from
electron transport chains). A recurring theme of the discussion
in several of the following Sections is to what extent light
energy balance (through its effect on PET and, less directly, on
RET) can influence ‘‘cellular redox homeostasis,’’ for example,
by modifying ROS production and associated metabolism or
by otherwise driving changes in the redox state of compo-
nents within the soluble phase.

2. Monitoring the motor: Signals from electron transport
chains. In harnessing light energy to drive metabolism,
plants had to master the art of redox control and, since neither
uncontrolled oxidation nor over-reduction are compatible
with efficient cellular energy utilization, the early photosyn-
thetic cells had to adapt to oxygen generation. Hence, survival
demanded and continues to demand redox controls of energy
metabolism and ultimately the expression of genes that are the
essential drivers, modulators, and protectors of the energy-
exchange processes. It is the poising function of oxygen that
marks out ROS as primary candidates as diffusible and re-
active mediators of signaling linked to electron transport
status. Besides ROS, other signals of electron transport sta-
tus clearly exist (Fig. 4) and exert a major influence on gene
function and post-transcriptional modification of proteins.
Control mechanisms operate at multiple levels of gene ex-
pression (summarized in 323), from transcription (324–327)
and translation (406, 438), and involve retrograde signaling
from the chloroplast to the nucleus (109, 300), as well as thy-
lakoid membrane protein phosphorylation (465). Similarly,
thiol–disulfide exchange reactions modulate the activities of a
wide range of chloroplast enzymes (51, 370), including those
of starch synthesis (164, 215) and starch degradation (385).
The redox state of PET components, such as the plastoquinone
pool, regulates many plastid and nuclear genes (108, 202–205,
359, 455, 456).

Several thylakoid protein kinases, including the plastid
transcription kinase (23) and the STN7 and STN8 kinases,
have been linked to signaling cascades that orchestrate the
readjustments in the expression of genes encoding thylakoid

proteins and so achieve an appropriate composition of light
harvesting complexes (LHC) and PS stoichiometries consis-
tent with the light environment (201). The STN7 and STN8
kinases interact in the signaling network that coordinates
nuclear and chloroplast gene expression and that induces the
expression of stress response genes, particularly heat shock
proteins (353). To date, relatively few components of this
pathway have been identified. This is surprising given that
the pathway is widely considered to be central to the light
acclimation processes and the prevention of over-reduction of
PSI electron acceptors that would enhance ROS production.
More recently, a histidine sensor kinase (chloroplast sensor
kinase, CSK) has been implicated in the redox control of
chloroplast gene expression (338). Signals derived from RET
chain components also modulate nuclear and mitochondrial
genes involved in primary metabolism (photosynthesis and
respiration) and influence other processes such as stress tol-
erance (99, 456). The persistence of redox control of gene ex-
pression within chloroplasts and mitochondria is considered
to provide evidence that redox signaling is a primary function
of their small, specialized but vital genomes (4, 6).

C. Metabolic and regulated production
of reactive oxygen species

1. The richness of ROS metabolism in photosynthetic
tissues. Concepts of the roles of ROS in heterotrophic plant
cells have partly been inspired by animal models and other sys-
tems such as yeast and nonphotosynthetic bacteria. However,
the overwhelming focus on the roles of ROS in plant re-
sponses to stress has been on photosynthetic tissues. It is often
stated that the oxygen content of chloroplasts is significantly
higher than the rest of the photosynthetic cell (15, 16). It is
worth noting, however, that although chloroplasts generate
oxygen on the interior face of the thylakoid membrane, there
is as yet little supporting evidence that either the thylakoid or
chloroplast envelope membranes present a significant bar-
rier to oxygen diffusion. Long-standing experimental data
suggest that the evolution of O2 in photosynthesis causes
only a modest increase in already high chloroplast O2

concentrations [*20% during photosynthesis in air (386)].
Nevertheless, photosynthetic cells indisputably have several
unique ROS-producing pathways and a multiplicity of ROS-
metabolizing systems.

Singlet oxygen can be produced in plants by several re-
actions, including lipid peroxidation and photodynamic en-
ergy transfer to O2 from excited triplet-state chlorophyll
molecules in both photosystems. Although singlet oxygen is
formed by reaction of O2 with both reaction centers and ac-
cessory light harvesting chlorophylls (226), it is thought that
the most significant source of singlet oxygen is probably in
the PSII reaction center where quenching by carotenoids
is less effective (127). Superoxide and H2O2 can be produced
by numerous pathways in photosynthetic cells. In addition
to production linked to PET and RET, a pathway called
photorespiration is a major producer of H2O2 (117, 295).
Photorespiration is due to the oxygenase activity of ribulose-1,
5-bisphosphate carboxylase=oxygenase (Rubisco), which
produces 2-phosphoglycolate: This small molecule is metab-
olized through a sequence of reactions that includes H2O2

production by glycolate oxidase (Fig. 5). The plasmalemma
and cell wall=apoplast are also rich in ROS-producing
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enzymes like NADPH oxidases (also sometimes called Re-
spiratory Burst Oxidase Homologs; RBOH), peroxidases,
amine oxidases, and oxalate oxidases (44, 362).

Current concepts distinguish between two types of ROS
accumulation in plant cells: (a) metabolic accumulation and
(b) regulated burst accumulation. Though we emphasize in
this review that this distinction is somewhat simplistic and
that there may be considerable interplay, the former category
would include PET and RET chains as well as glycolate oxi-
dase. As in animals, the best characterized systems in the
second category in plants are NADPH oxidases that act as
ROS-producing systems that are triggered in response to
specific environmental or metabolic cues. These enzymes are
considered to produce ROS at appropriate moments of plant
development and in response to environmental challenge
such as salt stress and pathogen attack.

2. ROS accumulation and compartmentation. The in-
creasingly refined identification of marker transcripts induced
by different ROS is providing useful tools for distinguishing
between the operation of different ROS signaling pathways in
various stress conditions (133). In addition to the information
derived from transcript abundance per se, marker transcript

promoters can be used to drive reporter genes. Use of such
tools is particularly important, given that accurate quantifi-
cation of ROS, either in vivo or in extracts, remains problem-
atic in plants (342, 422). Significant problems are related to
low stability and abundance (caused by reactivity and the
presence of a highly active antioxidative system), assay spec-
ificity, and artifactual interference during both extraction and
assay. Among the different ROS, H2O2 is the least reactive
(Fig. 2). However, there is still no consensus on likely leaf
contents or concentrations in different intracellular compart-
ments, and the quantification of even this relatively stable
ROS is problematic because of a range of potential artifacts,
for example, linked to ascorbate (342, 422).

The concept that inter-compartmental gradients in H2O2

are important response determinants is widely accepted. It
has been suggested that cytosolic peroxidases are important
in metabolizing H2O2 of chloroplastic origin (73), though it
remains unclear how such diffusion can be driven without
negative effects on H2O2-sensitive chloroplast reactions.
However, recent data show that H2O2 can be transported
within vesicles (240), clearly suggesting that membranes can
restrict H2O2 movement sufficiently to generate gradients
and unidirectional signaling, for example, from cytoplasm to
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FIG. 4. The role of the photosynthetic and respiratory electron transport chains (PET and RET, respectively) in the
production of redox signals, including ROS that provide information on current energy status for plant growth and accli-
mation responses to developmental and environmental cues. The scheme does not imply that ROS readily diffuse across the
membranes, and it is most probable that localized ROS signals are transduced by other components. CI, CIII, CIV, complexes
I, III and IV; cyt c, cytochrome c; PC, plastocyanin; PQ, plastoquinone; UQ, ubiquinone. Other abbreviations are as in Fig. 3.
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external compartments (cell wall=apoplast) or to one focal
point on a specific membrane, as occurs in papilla formation
or in stomatal closure, as illustrated in Fig. 6. This type of
vesicle trafficking involves integral membrane proteins
called ‘‘vesicle associated membrane proteins (VAMP),’’
that form the major component of the SNARE (soluble N-
ethylmaleimide-sensitive factor attachment protein receptor)
complexes that function in facilitating vesicle fusion with
target membranes (240). Trafficking of membrane-bound
solutes like H2O2 is essential not only for signaling but also to
accommodate the cellular volume changes associated with
opening and closing of the stomatal aperture. Stomatal func-
tioning requires cooperation between plasma and vacuolar
membrane vesicles, with which the AtVAMP7C complex is
associated. The regulated operation of H2O2-transporting
aquaporins (38) is therefore very important in the control of
H2O2 concentration gradients (165). The transport of H2O2

through the vesicular trafficking system likely allows very
specific targeting of required responses, such as those in-
volved in the positioning of root hair growth (111).

3. ROS movement in local and systemic signaling. H2O2

has been implicated in long-distance inter-organ signal in
systemic acclimation to excess light (131, 204), but to date
corroborative evidence is lacking (359). More likely explana-
tions are that ROS are continuously generated along the sig-
naling pathway or that there is a mobile signal that is induced
by H2O2 at the point of departure and that generates H2O2 at
the point of arrival. The latter mechanism could be partly
analogous to mechanisms occurring during establishment of
systemic acquired resistance of plants to pathogens (345, 388).
An attractive candidate for the long distance mobile signal in
the case of excess light acclimation is abscisic acid (ABA; see

Section VI, A, 3) which is an important inducer of H2O2 pro-
duction in response to abiotic stimuli (177, 466).

Although superoxide has been suggested as a signal inde-
pendent of H2O2 (185), it is considered unlikely to diffuse over
significant distances, given its rapid rate of nonenzymic dis-
mutation in aqueous solution and the presence of superoxide
dismutase (SOD) in most cell compartments. Equally, the
multiplicity of components with which the hydroxyl radical
can interact means that this ROS essentially cannot move from
the site of its production. Thus, while its formation is an im-
portant part of plant cell wall metabolism, it is generally
produced in the immediate vicinity of the required reaction
(130). The hydroxyl radical has also been implicated in oxi-
dative signaling necessary for cellular elongation in root hair
growth (111), but again its production site must be tightly
controlled in order for an appropriate targeted reaction to take
place. An important part of the control of root cell growth by
the gibberellic acid (GA)-mediated control of DELLA proteins
is regulation of the extent of ROS accumulation through ef-
fects on the expression of antioxidative enzymes (1).

Singlet oxygen is even more difficult to measure than
H2O2, though there is some evidence that it can also move
between compartments (109). While recent evidence suggests
that singlet oxygen can signal independently, it can be con-
verted to other ROS such as H2O2, for example, by reaction
with ascorbate (222). The extent to which signaling is sin-
glet oxygen-specific (rather than secondarily transmitted via
H2O2) presumably depends on how quickly specific second-
ary singlet oxygen signals are formed. Candidate second
messengers for signal transmission to the nucleus include
jasmonic acid ( JA) and other derivatives of chloroplast fatty
acid hydroperoxides whose production can be elicited by
singlet oxygen (see Section V, E).

III. Control of ROS Accumulation in Plants

A. Cellular specificity of ROS control and signaling

ROS accumulation is controlled both by the rate of pro-
duction and the rate of elimination by the antioxidative
system, linked to components in a ‘‘reactive oxygen gene
network’’ (275). Attempts to define such a network are com-
plicated by the fact that ROS, as indicators of cellular redox
state and reductant availability, are likely entwined with
multiple cellular processes [e.g., signaling through phytohor-
mones and compounds such as JA, salicylic acid (SA), and
ABA]. It may be difficult to establish whether a gene should be
placed within or outside such a network. A further compli-
cation arising from this type of analysis of whole tissues is that
they contain different cell types. This may mask many sub-
tleties in the interactions between ROS signaling pathways,
antioxidant genes, and their outcomes at the cellular level. In
the animal stem cell, redox functions influence the balance
between multiple processes related to self-renewal and dif-
ferentiation (384). In plants, differentiated cells such as those
of the leaf mesophyll are maintained at the G0 or G1 phase of
the cell cycle and respond more rapidly to PCD triggers than
dividing or meristematic cells. PCD was readily induced in
response to the addition of the bacterial cell suicide-elicitor
cryptogein at the S1 and G1 phases of the cell cycle in cultured
tobacco BY-2 cells but suppressed in G2 and M phases (198).
While little information is available on the genetic suppres-
sion of PCD in meristematic or dividing cells, it is clear that
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cell identity not only has a very strong effect on cellular redox
state but it also determines the outcomes of ROS signaling
pathways in different cell types (190), as well as their re-
sponses to abiotic stress (88).

The importance of cell identity in redox biology has been
most studied in the root rather than the leaf, as root cell lay-
ers are more easily differentiated for comparisons between
stem cells, which are capable of unlimited proliferation, self

maintenance, and self renewal, and those in the root quiescent
center (QC) and surrounding tissues (88, 189, 190). The root
QC is established and maintained as a consequence of auxin
that is transported in a polar fashion to the root tip, where it
can accumulate to relatively high levels, leading to the oxi-
dized state in the QC (188–190). Even though the root QC
mitochondria are maintained in a highly oxidizing envi-
ronment, they are indistinguishable from those in adjacent,
actively dividing cells. Crucially, even in a highly oxidizing
environment, the QC cells and their mitochondria do not enter
PCD or senescence. Hence, there must be a mechanism for
attenuating the ROS signaling pathways that would other-
wise lead to PCD at the G1=G0 phase of the cell cycle, and
such mechanisms may explain survival and enhanced stress
resistance in mutant tobacco plants that lack mitochondrial
complex I (101). QC cells may avoid entering cell suicide
programs by actively modulating ROS signaling pathways.
Moreover, the different cell layers in roots show specific gene
expression responses to defense hormones such as ABA (88).
Given the action of the growth-regulating DELLA proteins in
the regulation of antioxidant gene expression (1), the inevi-
table conclusion is that the ROS signaling pathways of a given
cell type and their consequences with regard to either PCD or
enhanced defense are set not only by environmental stimuli
but also by the genes that determine cell identity.

B. Multilevel control of ROS signal strength

For signaling to occur, depletion or withdrawal of certain
antioxidative components may be necessary. Implicit within
this concept is the notion that the signaling role of ROS ex-
tends beyond inducing antioxidative enzymes in a simple
feedback loop. These loops may be useful models for ROS
function in simple organisms such as prokaryotes, but recent
data in plants overwhelmingly show that the roles of ROS
are more subtle and complex (Fig. 7). As noted above, oxi-
dized states may be crucial for certain cell functions, and for
ROS to play a role in stress signaling the antioxidative sys-
tem must be tightly controlled. Examples are microRNA-
dependent downregulation of CuZnSOD expression (98, 394)
and coordinated control of growth and stress tolerance
through DELLAs (1). Other mechanisms involve stress and
light-mediated effects on turnover or post-translational CAT
regulation (367, 375, 425), post-transcriptional regulation or

FIG. 6. H2O2 accumulation in the intracellular vesicles of
guard cells when stomatal closure is triggered by ABA. The
confocal image shows guard cells on the epidermis of a
transformed Arabidopsis leaf with decreased expression of
the intracellular vesicle protein (AtVAMP711), a manipula-
tion that alters the size and number of visible vacuoles. The
leaf had been treated with 20 mM ABA 2 h prior to the image
analysis. The induction of H2O2 which is one of the earliest
cellular responses to ABA in the guard cells, is shown using
the fluorescent dye: 20, 70 - dichlorodihydrofluorecein diace-
tate (H2DCFDA; green color), which is a cell-permeant ROS
indicator that is nonfluorescent until removal of the acetate
groups by intracellular esterases in the presence of H2O2. The
image demonstrates that H2O2 is localized in intracellular
vesicles (endosomes) whose bounding membranes are vi-
sualised here using the potential-independent membrane
dye, MitoFluorTM Red 589 (orange-yellow).

FIG. 7. ROS signaling in plants: subtle and com-
plex. (A) Control of ROS concentration and antioxi-
dant expression by simple regulatory circuits. This
model may apply to prokaryotes and other simple
unicellular organisms but is of limited validity for
complex organisms, particularly plants. (B) In plants,
ROS are at the heart of developmental and stress sig-
naling, and the effects of different ROS are controlled
at multiple levels, including rates of production, re-
moval, and location. Recently described mechanisms
affecting the activity of the antioxidative system in-
clude DELLA proteins, miRNAs, and NO (for further
discussion, see text).
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inactivation of ascorbate peroxidase (81, 274, 377), and over-
oxidation or nitrosylation of peroxiredoxins (87).

Four factors can be considered to be most important in
determining ROS signaling strength: rates of production,
compartmentation of ROS production (e.g., in vesicles), rates
of removal, and presence of receptors or detection sys-
tems. Sequestration of ROS in vesicles with weak antioxi-
dant activity would partially overcome the requirement
for downregulation of the antioxidative systems. Alter-
natively, selective downregulation of the antioxidant sys-
tem may be crucial for signaling, for example, in PCD
responses (136, 358). Another important aspect could be
conditional failure to induce defensive patterns of gene ex-
pression in response to ROS, as observed in CAT-deficient
plants growing in long-day conditions (341). While a tran-
sient dramatic decline in the activities of a cytosolic ascor-
bate peroxidase isoform (APX1) and peroxisomal CAT2 at
the point of flowering has been suggested to lead to a tem-
porary increase in leaf H2O2 that is important in the or-
chestration of senescence (471, 472), there are relatively few
studies in the literature where changes in tissue antioxidant
transcripts=activities and oxidants have been discussed in
terms of signaling requirements.

C. Complexity of the plant antioxidative system

The ubiquity of ROS in plant metabolism no doubt ex-
plains the complexity and apparent partial redundancy of the
antioxidative system in plants, which includes numerous
classes of reducing metabolites as well as enzymes (275). Low-
molecular-weight antioxidants are often described as mole-
cules that are able to reduce oxidants without themselves
having significant pro-oxidant action. Numerous classes of
compounds found in plants have been discussed as antioxi-
dants (e.g., ascorbate, glutathione, tocopherols, carotenoids,
flavonoids, and related phenylpropanoid derivatives, poly-
amines) and many other common molecules can be consid-
ered to have this property (e.g., sugars and sugar alcohols).
However, some of these compounds can also potentially be
pro-oxidants, depending on the biochemical context and
presence of enzymes such as oxidases. For example, signaling
roles of apoplastic polyamine oxidase and polyamine-derived
H2O2 have been described in defense and PCD responses to
abiotic stress (279).

While singlet oxygen and the hydroxyl radical are thought
to be essentially controlled by nonenzymatic detoxification
systems, several enzymes play important roles in H2O2 re-
moval. Enzymes that participate in antioxidative metabolism
and related redox reactions can be distinguished as follows:
(a) the protein acts as a primary antioxidative enzyme (i.e., it
uses superoxide, H2O2 or organic peroxide as substrates); (b)
it is involved in maintenance of redox state (e.g., regeneration
of reduced forms of reductants); (c) it functions to control
secondarily released metabolite signals (e.g., conjugases).
Within the first category, the best-studied primary anti-
oxidative enzymes in plants are superoxide dismutases, CAT,
and APX (Fig. 1). While the first two catalyze dismutation
reactions, the third requires reductant in the form of ascor-
bate. Many other types of peroxidases exist in plants (44, 86,
182) as well as in other organisms (110). Among these, per-
oxiredoxins may have an important function alongside APX
in H2O2 removal (87). Compared to the well-characterized

APX, less information is available on the enzymatic properties
of peroxiredoxins. Available data suggest that 2-cys peroxir-
edoxins could play a significant role in the chloroplast, where
peroxiredoxin capacity to reduce H2O2 was reported to be
about half that of soluble APX (87). Many other peroxidases
may be more important in metabolism of organic peroxides
(some thiol-based peroxidases), oxidation of organic com-
pounds with possibly incidental H2O2 removal or, indeed,
production rather than removal of H2O2 (other heme-based
peroxidases). Attention has also been drawn to the possible
roles of thiol-based peroxidase in signaling, rather than simple
H2O2 removal (113).

The second category of antioxidative enzymes—proteins
that supply or maintain reductant—includes enzymes such as
dehydroascorbate reductase (DHAR), glutathione reductase
(GR), and NADPH-generating dehydrogenases, as well as
some glutaredoxins and thioredoxins, while the third cate-
gory consists of enzymes such as glyoxylases, aldo=keto re-
ductase, cytochrome P450s (CYPs), conjugase-type GTs, and
glycosyl transferases.

D. The ‘‘induced by ROS’’ paradigm

Strictly, only enzymes that catalyze ROS removal or asso-
ciated reductive reactions should be considered ‘‘anti-
oxidative.’’ Other criteria have been used, however, notably
activities that diminish the probability of ROS production
such as the mitochondrial alternative oxidase or genes that are
induced by oxidizing conditions, though more general terms
such as ‘‘cell rescue=defense’’ are often used to class all these
enzymes together (e.g., in transcriptomics studies). A concept
that was established early in the development of the field is
that plant antioxidative enzymes are generally induced by
ROS (or stress) and that genes induced by ROS can be con-
sidered to have defense functions. As previously noted (292),
this concept should be applied with caution. Many genes of
the core antioxidant system are either not induced or only
moderately induced by stress, and this may even be the case
for enzymes that have a stress-specific function. Indeed, a
recent meta-analysis of transcriptomics responses across a
range of organisms showed that while external H2O2 induced
antioxidative genes in unicellular organisms, responses were
less clear or absent in multicellular organisms (418). This is
consistent with the far greater subtlety of ROS functions in
complex organisms (Fig. 7).

The lack of strong ROS induction of many antioxidant
genes in plants may also reflect the importance of regulation
of the antioxidant system at the post-transcriptional level (264,
316, 366). Many true antioxidant genes are quite strongly ex-
pressed even in nonstress conditions, either to deal with the
high rates of constant ROS production that occur during
photosynthesis, photorespiration, and respiration (Fig. 8), or
in readiness for impending environmental fluctuations that
are likely to quickly ramp up these rates (e.g., changes in light
intensity) (413).

Genes strongly induced by H2O2 include UDP-glucosyl
transferases, CYPs, and glutathione transferases (341, 419).
Many of these stress-specific genes have very low expres-
sion in optimal conditions and their functions in many cases
remain to be established. These may include roles in second-
ary pathways producing signaling compounds or control
of such compounds by modification and conjugation (235,
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FIG. 9. The influence of ascorbate on growth and defense in Arabidopsis. Low ascorbate in the Arabidopsis vtc1 mutant
(A) is accompanied by a modest increase in leaf glutathione and is associated with slow growth and biomass production as
compared to the wild type. The vtc1 mutant is more resistant to biotrophic pathogens that, upon inoculation, lead to
spreading chlorotic patches on the leaves as illustrated by the yellow arrows in (B). The enhanced resistance to biotrophic
pathogens is associated with the enhanced cell death phenotype that is illustrated in the inserts showing sections of the
noninoculated control leaves stained for dead cells, which are indicated by the white arrows.
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459). Glutathione transferases are further discussed in Sec-
tion III,F,2.

E. Ascorbate and ascorbate peroxidases

In terms of cellular homeostasis and signaling, one im-
portant consideration is whether antioxidant enzymes require
cellular reductants, as this property potentially allows ROS
processing to exert secondary localized or more ‘‘bulk-phase’’
effects on antioxidant and reductant pools that could be
sensed by the cell (291). In plants, ascorbate is by far the most
abundant low molecular antioxidant. The interactions be-
tween ascorbate, superoxide and hydrogen peroxide in chlo-
roplasts at the level of PSI (5), the enzymes of photosynthetic
carbon assimilation (115) and the water–water cycle via APX
and the reduction of monodehydroascorbate (MDHA) and
dehydroascorbate (DHA; 15, 16, 115) have been extensively
studied for many years. As well as a substrate for APX,
ascorbate has numerous functions in plants, and this is re-
flected in its accumulation in many plant tissues to concen-
trations well above those required for APX activity. Ascorbate
is a cofactor in various biosynthetic pathways and in the
xanthophyll cycle which helps protects plants against the
harmful effects of excess excitation energy (EEE) (114, 115, 292).

1. Ascorbate in plant development and signaling.
Ascorbate is ubiquitous in eukaryotic organisms but is highly
abundant in plants where it is clearly essential for develop-
ment and growth regulation. Arabidopsis mutants with
partly decreased ascorbate show slow growth and late flow-
ering phenotypes (Fig. 9) while total depletion of ascorbate
results in nonviable plants (94). The lethality of abolishing
ascorbate synthesis in plants is explained by the multiple
functions of ascorbate in plant growth and development as
well as in metabolism and defense (292, 382).

Both the abundance of ascorbate and its redox state are
regulated in plants in relation to the control of growth and
development (28, 292, 318). Whereas dry seeds retain gluta-
thione, they are depleted in ascorbate (223). Low levels of leaf
ascorbate are associated with premature senescence (28) and
enhanced susceptibility to PCD (318). Moreover, oxidation of
ascorbate to DHA has been linked to decreased cell cycle ac-
tivity (74, 79, 80, 243). Ascorbate and glutathione act in in-
dependent pathways to regulate the plant cell cycle (331, 332)
and ascorbate cannot restore root growth to the Arabidopsis
thaliana rml1 mutant, which is deficient in glutathione (423).

Given the multifunctionality of ascorbate in plant biology,
it is perhaps not surprising that it acts as a signal that mod-
ulates gene expression. Ascorbate deficiency leads to specific
leaf transcriptome signatures (208, 317). Similarly, ascorbate
has extensive interactions with phytohormone metabolism
and signaling (317). For example, ascorbate interacts directly
with the pathways of ABA synthesis and signaling, and also
modulates downstream processes such as stomatal opening
(60, 248).

2. Ascorbate synthesis and turnover. Animals and plants
employ different pathways of ascorbate synthesis. The best
studied pathway in plants is the L-galactose pathway (433),
which is the only pathway in Arabidopsis leaves (94). The
other pathways of ascorbate production in plants often in-
volve carbon skeleton recycling networks (72, 382, 414). As-

corbate produced in leaves is not only accumulated in these
organs but it is also loaded into the phloem through apo-
plastic and symplastic loading mechanisms. Ascorbate
transported through the phloem may not only protect the
vital systemic plant transport systems but also be important in
plant–insect interactions. For example, plant ascorbate oxi-
dase has been viewed as a defense protein that protects
against herbivory as it decreases ascorbate that is essential for
the efficient functioning of the herbivore’s digestive system
(27). Insects, like plants, have dedicated APX (261) and re-
lated enzymes (27). An intriguing and unexplored possibility
is that leaf and phloem ascorbate contents might be an im-
portant determinant in the feeding choices of insects such
as aphids.

Our knowledge of the complex network of environmental
and metabolic factors that regulate ascorbate homeostasis in
different tissues remains incomplete (30, 31). A key feature
of plant ascorbate synthesis is the localization of the last
enzyme of the pathway, galactonolactone dehydrogenase
(GalLDH), in the mitochondria. This enzyme is physically
associated with mitochondrial complex I and, since it uses
oxidized cytochrome c as an electron acceptor, is also func-
tionally linked to complexes III and IV (272). The capacity of
plants to produce ascorbate is thus linked to the activity of
the respiratory electron transport (RET) chain (272). The PET
chain also exerts an influence on ascorbate synthesis and
accumulation (453) and light quantity and quality are im-
portant determinants of leaf ascorbate contents (31, 245, 381).
Leaf ascorbate contents decrease rapidly in darkness (31,
313). The accumulation of ascorbate in leaves during the
light period regulates not only the rate of ascorbate degra-
dation in darkness but also the amount transported to the
cell wall=apoplast (421).

The factors that control ascorbate accumulation in fruit are
different from those that operate in leaves. For example, while
ascorbate synthesis decreases as leaves enter senescence,
ascorbate production does not greatly decrease as fruit ma-
tures (194). Maintaining a high antioxidant status throughout
fruit development is important as oxidative processes are
often involved in the ripening process. The capacity to recycle
reduced ascorbate from its oxidized forms (MDHA and
DHA) is as vital to maintaining high tissue ascorbate contents
as the capacity for synthesis (30, 61). Relatively few signaling
molecules have been shown to influence the pathway of
ascorbate synthesis. These include phytochrome (authors’
unpublished observations), while JA has also been shown to
alter the ascorbate synthesis through the regulation of the
expression of genes encoding biosynthetic enzymes (443).

3. Ascorbate in the apoplast. Ascorbate is the only sig-
nificant redox buffer in the apoplast, where it is very impor-
tant in regulating cell wall synthesis and cross-linking, as well
as defense against pathogens and atmospheric pollutants
such as ozone. Like the thylakoid membranes (122) and the
inner mitochondrial membrane (396), which has high affinity
ascorbate transporter systems with KM values ranging from
40 to 139 mM, the plant cell plasma membrane transports both
ascorbate and DHA. However, to date no homologs of the
animal-type sodium-dependent ascorbate transporters have
been identified in plants. Ascorbate oxidase is uniquely lo-
calized in the apoplast=cell wall compartment, where it con-
trols the redox state of the extracellular ascorbate pool (328,
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329). Hence, the regulation of ascorbate homeostasis in this
compartment is vitally important, not only to extracellular
metabolism but also to sensing environmental perturbations
and modulating the redox gradient across the plasma mem-
brane. The ascorbate degradation pathway involves several
novel intermediates including 4-O-oxalyl-L-threonate. Unlike
the ascorbate synthesis pathway which is located inside the
cell, degradation reactions have to date only been described in
the extracellular compartment or surface (147).

4. Ascorbate peroxidases. While ascorbate oxidase cat-
alyzes the oxidative production of MDHA using molecular
oxygen, APXs catalyze the H2O2-dependent oxidation of
ascorbate to MDHA (15, 16). Chloroplasts contain two APX
isoforms, one localized in the stroma and the other bound to
the stromal side of the thylakoid membrane by a C-terminal
hydrophobic tail (15). The chloroplast APXs are also targeted
to the mitochondria (62). Other APX isoforms, which are
similar in sequence and structure to the chloroplast stromal
form, are localized in the cytosol and peroxisomes (62, 73, 192,
274, 467). With few exceptions (405), the importance of the
chloroplast and cytosolic APX forms to cellular redox ho-
meostasis has been demonstrated. Impaired APX function
enhances the susceptibility of plants to stress-induced oxida-
tion while overexpression favors stress protection (73, 216,
217, 286, 319, 453).

Chloroplast APXs have a catalytic turnover number that is
several-fold higher than that of the cytosolic forms (210).
However, unlike the cytosolic forms, the chloroplast APXs are
extremely susceptible to inactivation by H2O2, possibly be-
cause of the formation of a crosslink between heme and Trp35,
which is located on the distal side of heme (211). When APX
reacts with one molecule of H2O2, the ferric (FeIII) atom of
heme is oxidized to the oxyferryl (FeIV¼O) species, and a
porphyrin-based cation radical intermediate is formed (com-
pound I). The porphyrin-based radical is then reduced by an
ascorbate molecule to form another intermediate (compound
II). Its oxyferryl species is then reduced by a second ascorbate
molecule to the ferric resting state. If ascorbate is absent and
compound I is not reduced, the porphyrin-based radical is
reduced by an amino acid residue of the apoprotein. As a
result, the cation radical is transferred from porphyrin to the
amino acid residues. APX inactivation is thought to be due to
an attack on the reaction intermediates by H2O2 (210, 211).

F. Glutathione in plants

A high concentration of intracellular nonprotein thiols is
closely related to aerobic metabolism (106) and in almost all
eukaryotes, the major thiol is glutathione. In plants this me-
tabolite has many roles that are also found in mammalian cells
(thiol-disulfide buffering, peroxidase substrate, GT substrate,
glutaredoxin substrate) but also others (phytochelatin synthe-
sis, sulfur assimilation, and storage). Like ascorbate, glutathione
is found predominantly in the reduced form in many com-
partments. Tissue GSSG contents often correlate with dor-
mancy and cell death (224, 225), though GSSG can accumulate
to high concentration in leaves without causing cell death
though this is associated with much decreased growth (341).

1. Glutathione in peroxide metabolism in plants. There
are important differences between the peroxidase function of

glutathione in plants and in many animals. Plants lack a se-
lenium-based glutathione peroxidase and thiol-dependent
enzymes previously annotated as glutathione peroxidase in
plants are now thought to use thioredoxins (168, 182). How-
ever, glutathione can also directly participate in peroxide
metabolism as a substrate for glutaredoxin-linked peroxir-
edoxins (360) and peroxidatic GTs (427).

2. Glutathione transferases (GT). The GTs are a large
group of enzymes found in both eukaryotes and prokaryotes
which have evolved to fulfil diverse functions. They catalyze
the S-conjugation of reactive compounds with GSH. Plants
have many genes encoding GTs, and the major focus has been
on their role in detoxification of xenobiotics driven by interest
in herbicide action and the production of safeners. The major
classes, both in terms of the sizes of their respective gene
families and relative abundance of the encoded proteins, are
the plant-specific tau (GTU) and phi (GTF) proteins. Arabi-
dopsis thaliana (At) encodes 28 AtGTUs, 13 AtGTFs, as well as
smaller gene families of the zeta AtGTZs and the theta
AtGTTs. Moreover, the DHARs are now considered as a spe-
cific GT class, differing in their active site chemistries from
other family members (89). Within the GT superfamily in
plants, several transcripts are induced by H2O2, but the most
strongly induced (on a fold-change basis) are not those that are
predicted to have a direct antioxidative (peroxidative) func-
tion. These GTs (GTFs) are less strongly induced than certain
GTUs, which are thought to have a conjugase function (427).

3. The ascorbate–glutathione link. Other than direct
peroxidation catalyzed by the above enzymes, glutathione
pools are also linked to H2O2 via the ascorbate–glutathione
pathway in which ascorbate pools are maintained by
glutathione-dependent reduction of DHA, as shown in Fig. 1
(115). This pathway exists in several cell compartments, in-
cluding mitochondria and peroxisomes (62, 192), and has also
been proposed to occur in animals. As discussed above, APX
is found in at least four intracellular compartments and is
encoded by a small gene family in Arabidopsis. Despite the
fact that ascorbate, and not glutathione, is thought to be the
major metabolite reductant for peroxidases in plants, a strik-
ing response to increased cellular H2O2 availability is often a
dramatic increase in the total glutathione pool caused largely
by the accumulation of GSSG (341, 351, 383, 436).

4. Glutathione synthesis and compartmentation. The
first dedicated enzyme of glutathione synthesis, g-
glutamylcysteine synthetase (g-ECS), is located in plastids
in Arabidopsis (426). The enzyme is encoded by a single gene
and knocking out its expression results in an embryo-lethal
phenotype (55). Phenotypes and thiol perturbations in
knockout mutants for the second enzyme, glutathione syn-
thetase, which is encoded by a gene that produces proteins
located in both plastid and cytosol, can be rescued by trans-
formation with glutathione synthetase directed only to
the cytosolic compartment (315). This implies that g-EC and
glutathione can be exchanged across the chloroplast enve-
lope at rates sufficient to ensure normal plant function. Glu-
tathione uptake by purified wheat chloroplast has been
reported (296) and clues regarding the identity of the proteins
responsible come from studies on the Arabidopsis mutant,
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chloroquine-resistance-like TRANSPORTER1 (clt1), which
was selected via resistance to the glutathione biosynthesis
inhibitor L-buthionine-(SR)-sulfoximine (BSO). The CLT
family in Arabidopsis consists of three members (CLT1, CLT2,
and CLT3) and all these proteins reside in the chloroplast
envelope. Triple mutant plants lacking functional copies of all
three genes have glutathione levels similar to the control
plants. However, the glutathione pool in the leaves of the
triple mutant is restricted to chloroplasts with no GSH de-
tectable in the cytosol. The expression of CLT1 in Xenopus
oocytes confirmed that it is a g-glutamylcysteine and GSH
transporter (authors’ unpublished observations). Other plant
peptide transporters have also been identified that are able to
transport glutathione (54).

There is no convincing evidence that glutathione is syn-
thesized within plant mitochondria, yet recent work using
immunolocalization reported high concentrations of gluta-
thione in this compartment (464). Whereas mitochondrial
uptake systems remain to be characterized in plants, it is in-
teresting to note that plants have Bcl-2-like proteins, which
regulate GSH transport into animal mitochondria and hence
influence the essential pool of mitochondrial GSH that is in-
volved in apoptosis in animal cells (470).

Tonoplast GSH uptake systems remain to be fully charac-
terized, as do transporters capable of taking up glutathione
conjugates (257, 401). Although neither GSH nor GSSG was
detected in the large central vacuole of plant cells (464), it
remains to be seen whether significant glutathione can accu-
mulate in this compartment under certain conditions (e.g.,
when GSSG formation is favored), as is particularly evident in
plants exposed to ROS such as ozone or enhanced endoge-
nous H2O2 (37, 341, 371) and which also occurs during plant–
pathogen interactions and chilling (144, 280, 296, 415).

Synthesis of glutathione is controlled at multiple levels.
Tissue glutathione contents can be increased by Cys supple-
mentation (292) and overexpression of serine acetyl trans-
ferase, a key enzyme involved in Cys synthesis, increases
glutathione as well as Cys contents (160). Downstream of
Cys, much attention has focused on g-ECS, as overexpression
studies show that increases in this enzyme are sufficient to en-
hance glutathione contents (69, 294, 448) and control of the en-
zyme activity occurs at transcriptional and post-transcriptional
levels (144, 264, 446). Post-transcriptional mechanisms in-
clude feedback regulation and thiol-disulfide regulation of the
g-ECS protein (169, 175) while mechanisms that regulate
translation of g-ECS transcripts have also been reported (447).

5. Glutathione degradation. Turnover of glutathione can
occur either at the plasmalemma or in the vacuole (390).
Turnover of the glutathione tripeptide in the vacuole is
thought to be particularly important in the response to xe-
nobiotics and other GT substrates. The first step may in-
volve cleavage of glycine (carboxypeptidase) or glutamate
(g-glutamyltranspeptidase) and both activities have been re-
ported in plant vacuoles (42, 153, 440). Transpeptidase activity
shows differential tissue expression in corn (258) and genetic
analysis is uncovering the tissue and subcellular specificity of
the products of the four genes encoding these enzymes in
Arabidopsis (153, 256, 303, 304).

6. GSSG concentrations and glutathione redox potentials
in plants. As well as the key influence of the GSH=GSSG

ratio, the glutathione redox potential is modulated by total
glutathione concentration. Genetic and other evidence shows
that glutathione concentration is important in meristem
function, light signaling, and pathogen responses (25, 96, 128,
228, 263, 314, 346, 415, 423). Within the context of plant re-
sponses to pathogens it has been shown that both the cytosolic
regulatory protein, NPR1, and the specific TGA-type tran-
scription factors with which NPR1 interacts, are controlled by
disulfide reduction (84, 280). While NPR1 is the only redox
active protein of its type described to date (see Section IV, E,
2), it would be rather surprising if there were not other GSH or
redox-modulated cytosolic proteins and transcription factors
that mediate gene expression in a reversible manner through
thiol–disulphide exchange reactions or glutathionylation.
Moreover, while net GSH movement from the cytosol to the
nucleus has not been described to date, it is possible that plant
cells, like their animal counterparts, regulate GSH movement
between these compartments to regulate gene expression.
GSH movement from the cytosol to the nucleus is important
in the control of progression through the mammalian cell
cycle (253). GSH was located mainly in the nucleus of prolif-
erating fibroblasts but only in the cytosol when the cells
reached confluence (253).

The NADPþ=NADPH and GSH=GSSG midpoint poten-
tials are separated by *90–100 mV. If these couples are in-
deed at thermodynamic equilibrium and glutathione is in the
2–5 mM range, a typical NADPþ=NADPH ratio of 1 (340)
should co-exist with a [GSH]2=GSSG ratio of *1,000, equiv-
alent to GSSG in the low nanomolar range. Redox-sensitive
GFP proteins have been introduced into plants by transfor-
mation (191, 268) and suggested to faithfully report on the
cytosolic glutathione redox potential in vivo, yielding redox
potential values below �300 rather than close to �200 mV.
Such values imply that cytosolic GSSG concentrations are
indeed in the nanomolar range or lower. Since the total glu-
tathione concentration is in the millimolar range (265, 291),
this means GSH=GSSG equal or greater to 106. A decrease
in this ratio to 103 would represent an increase in absolute
GSSG concentrations of *1,000-fold, a change extremely
difficult to measure in homogenized extracts with commonly
used techniques. Since the glutathione redox potential be-
comes *30 mV more positive for each 10-fold decrease in
GSH=GSSG, the potential would increase *90 mV (Fig. 10),
potentially promoting oxidation of thiol groups with mid-
point potentials between the two values. A redox potential
change of *90 mV is within the range of that required
to achieve protein thiol=disulfide exchange in the well-
known light–dark regulation of stromal enzymes by thio-
redoxins (372). Therefore, one enticing argument in favor of
very low in vivo concentrations of GSSG in some compart-
ments is that they would enable high signaling sensitivity
to be achieved by relatively small absolute changes in
GSSG concentration. However, it remains to be established
whether glutathione-linked redox signaling necessarily in-
volves thermodynamically-driven changes, or is rather more
influenced by other processes (e.g., glutaredoxin expression or
activity, NO production).

In yeast, the cytosolic GSH:GSSG ratio is considered to
be *100 (408), while numerous measurements in plant ex-
tracts indicate that even in the absence of stress, *5% of tis-
sue glutathione is found in the GSSG form. At physiological
glutathione concentrations, these ratios would predict a
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‘‘global’’ redox potential close to �200 mV rather than
�300 mV. However, even when used carefully, extraction
techniques can cause some artifactual formation of GSSG. A
key factor is careful control of the pH during sample prepa-
ration. In addition to possible artifactual effects, the GSSG
that is detected in vitro may be preferentially sequestered in
specific compartments in vivo (e.g., vascular tissues or the
vacuole). Certain tonoplast ABC transporters perform import
of GS-conjugates into the plant cell vacuole (124). As gluta-
thione disulfide is a GS–SG conjugate, these proteins may also
be able to transport this form of glutathione (401), either ex-
clusively or in preference to GSH. Such processes could play a
significant role in avoiding excessive GSSG accumulation in
the cytosol, yet concrete evidence is lacking.

G. The ascorbate–glutathione cycle, thiol–disulfide
exchange, and oxidative protein folding

Many plant metabolic pathways are regulated by the en-
zymatic reduction of disulfide bonds in redox-regulated
proteins (51, 370). Thiol=disulfide exchange reactions are
particularly important in the regulation of metabolism in the
chloroplasts, where over 90 thioredoxin targets have been
identified (239). The preference of the disulfide-containing
proteins for reduction by dithiol reductants, such as thior-
edoxin, provides a mechanistic basis for resisting reduction by
GSH and similar compounds in the chloroplast environment.
The different kinetics of monothiol versus dithiol reductants
may be responsible for the stability of chloroplast disulfides.
While some chloroplast proteins may have particular thiols
that readily react with GSSG, as discussed above, the high
preferential reduction of regulatory disulfides by thioredoxin
rather than glutathione might be a mechanism allowing these
bonds to be formed and regulated independently of ascorbate
and glutathione pools. Since enzymes are required to trans-
fer the electrons from target proteins to O2 in the cellular
disulfide-forming systems, one would predict that thiol oxi-
dation would also be enzyme-regulated in the chloroplast.
While the oxidizing components remain to be established,
peroxiredoxin and glutathione peroxidase are probably not
alone in being able to accept electrons from thioredoxin in
the dark (370). Little is known about how the processes that
form intermolecular disulfide bonds in chloroplast proteins
in the light. However, in response to sucrose, cytosolic tre-
halose 6-phosphate stimulates dimerization of the ADP-
glucose pyrophosphorylase protein via the formation of an
intermolecular disulfide bond in the light (164, 215), that in-
hibits activity in a similar mechanism to that described for
acetyl CoA carboxylase (221). Such reactions may be cata-
lyzed by thiol oxidases, oxidative-type thioredoxins, or chlo-
roplast protein disulfide isomerase-like proteins, as described
in other organisms (349).

IV. Redox Compartmentation, Exchange, and Signaling

With ferredoxin, NADPH is the major driver of chloroplast
assimilatory metabolism. These reductants are produced by
the chloroplast PET chain and, together with ATP, used to

FIG. 11. Key chloroplast envelope redox shut-
tles. Fdox=Fdred, oxidized=reduced ferredoxin;
FNR, ferredoxin-NADPþ reductase; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase;
MAL, malate; MDH, malate dehydrogenase; MT,
malate transporter; OAA, oxaloacetate.PGA, 3-
phosphoglycerate; PGAK, PGA kinase; PSI, pho-
tosystem I; PT, phosphate translocator; TP, triose
phosphate.
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FIG. 10. Relation between glutathione redox potential
and the fraction of glutathione as GSH. Total glutathi-
one concentration is assumed to be 2 mM. Numbered arrows
in (A) indicate 1. GSH=GSSG¼ 106. 2. GSH=GSSG¼ 103. 3.
GSH=GSSG¼ 1. Changes in total glutathione do not appre-
ciably change the shape of the curve, which is shifted to more
negative values as concentration increases [for example, see
Fig. 3 in Noctor, 2006 (291)]. If 99% of the total pool is GSH,
the calculated redox potentials for 1, 2, and 5 mM glutathione
are �219, �228, and �240 mV, the last corresponding to the
midpoint potential at this concentration.
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generate sugar-phosphates, amino acids, and many other
metabolites that are then supplied to the rest of the cell (Fig. 8).
As the main factory of the photosynthetic cell, the chloroplast
drives much of its redox changes and mechanisms are known
through which the influence of the PET chain could extend
far beyond the redox state of the chloroplast stroma. These
include potentially high-capacity redox shuttles across the
chloroplast envelope.

A. NADPH compartmentation and shuttles

In addition to its function in biosyntheses, NADPH is a key
factor underlying redox signaling and maintenance of cell
homeostasis. This coenzyme is required for regeneration of
both ascorbate and glutathione pools (Fig. 1), as well as
NADPH oxidase activity, reduction of thioredoxins, and
many other reactions of primary and secondary metabolism
(291). Perhaps because of the primary focus on the chloro-
plast, less attention has focused on cytosolic NADP status in
plant stress responses than in redox signaling in animal cells
(441). In plants, redox gradients in NAD(P) status exist be-
tween chloroplasts, mitochondria, and cytosol (180). How-
ever, the redox states of compartments are not fixed and are
likely to change with environmental fluctuations, in particular
the balance between light availability and the capacity of
metabolism to use light energy. Controls within the chloro-
plast include feed-forward mechanisms such as activation of
metabolism by thioredoxins reduced in a light-dependent
fashion by the PET chain (Fig. 4; 369, 442). Mechanisms exist
to decrease light capture efficacy and constrain electron
transport when light is in excess of metabolic capacity. Stro-
mal ATP utilization is linked to light capture efficiency via
DpH-dependent non-photochemical quenching (78, 173, 289,
293) and it has recently been proposed that NADP redox
status could also feed back to regulate PET activity (155).
Although the primary impact of changes in light availabil-
ity is in the chloroplast, effects on NAD(P) status in extra-
chloroplastic compartments are also possible (180). This could
be important in relaying light signals to both the cytosol and
could also affect mitochondrial redox state and regulation. A
number of mitochondrial thoredoxin targets have been iden-
tified (26) but the factors that determine their redox state re-
main to be elucidated.

1. High-throughput redox exchange from the chloro-
plast. As well as possible direct movement of ROS or
secondarily produced signals from the chloroplast, stress-
induced changes in chloroplast metabolism could be trans-
mitted by enhanced redox shuttling or other transporter
activity. If this leads to promotion of increased substrate
for the RET chain or NADPH oxidases, it would allow light-
driven chloroplast processes to contribute to H2O2 production
elsewhere in the cell. Attention has been drawn to interac-
tions between apoplastic=plasmamembrane and chloroplastic
events, for instance during ozone stress or plant–pathogen
interactions (33, 136, 197). Examples of extra-chloroplastic
NADPH-linked enzymes important in redox homeostasis and
signaling are GR, NADPH-thioredoxin reductase, and plas-
mamembrane-bound or vesicular NADPH oxidases. While
pyridine nucleotides do not cross the inner chloroplast enve-
lope membrane at rates that are comparable to chloroplast
NADP redox cycling, this membrane has shuttle mechanisms

to allow high-flux exchange of reducing equivalents (Fig. 11),
potentially linking changes in stromal and extra-chloroplastic
NADP redox states. Key enzymes are malate dehydroge-
nases (MDH) and glyceraldehyde-3-phosphate dehydroge-
nases (GAPDH). The function of such ‘‘valves’’ may be
double, as they could both relieve electron pressure in the
chloroplast and signal overreduction to the cytosol=nucleus
(171). Chloroplast NADP-MDH is known to be regulated by
thioredoxins and NADP redox state (271,364) and recent data
have shown that both chloroplast and cytosolic GAPDHs are
subject to glutathionylation (171,462).

2. Production of NADPH in the cytosol. Whether the ex-
change reactions shown in Fig. 11 contribute directly to
production of either NADH or NADPH depends on the
specificity of the cytosolic dehydrogenase. In terms of NADPH
production, one example of a cytosolic enzyme whose physi-
ological role merits some attention is the nonphosphorylat-
ing glyceraldehyde-3-phosphate dehydrogenase (npGAPDH).
This enzyme oxidizes glyceraldehyde-3-phosphate directly to
3-phosphoglycerate (without the 3-phosphoglycerate kinase
reaction) and produces NADPH rather than NADH (206).
An Arabidopsis knockout mutant for the single predicted cy-
tosolic npGAPDH gene in this species showed higher leaf
NADPH contents and enhanced staining for superoxide (350).

Cytosol NADP redox state could also be influenced by
consumption by the mitochondrial electron transport chain,
reactions made possible in plants by NADPH dehydroge-
nases localized in the inner mitochondrial membrane with
catalytic orientation towards the cytosol (244, 344). Calcium
signaling is known to be tightly intertwined with ROS re-
sponses in plants (105). At least some mitochondrial NADPH
dehydrogenases are calcium-regulated (244), a property they
share with enzymes such as NAD kinase and NADPH oxi-
dases, as well as other enzymes potentially influential in de-
termining cytosolic NADP(H) status (291).

While the cytosolic GR has been well characterized bio-
chemically (387), much less information is available on
NADPH oxidases. Neither their capacities nor their kinetic
characteristics are well known in plants. It has been consid-
ered that calmodulin-regulated cytosolic NAD kinase is im-
portant in maintaining NADP pools for NADPH oxidase
activity during plant–pathogen interactions (159). As well
as NAD kinase, recent work has described kinases that can
use NADH to produce NADPH directly (410). Although rates
of NADP redox turnover in the cytosol (Fig. 12) are less easy to
estimate than in the chloroplast (where approximate values
can be inferred from photosynthetic rates), they are probably
at least as fast as NADP synthesis and degradation reactions.
There is likely to be some redundancy in NADPH generation
given that several genes encoding cytosolic NADPþ-linked
dehydrogenases may be simultaneously expressed (170, 351,
412, 429, 430). Recent work on pea nodules has provided some
evidence for differential responses to oxidative conditions
(252).

B. Photorespiration-linked redox exchange

Photorespiration is a chloroplast-initiated process that
has significant effects on plant growth, yield, and ecological
distribution. Flux through the pathway is light dependent,
greatly increased by warm temperatures, and further favored
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by any condition that promotes stomatal closure (e.g.,
drought). Although photorespiration is not very rapid in low
light conditions or at low temperatures, it is in many other
conditions a high-flux pathway whose complex nature means
that it is likely to impact on redox status both inside and
outside the chloroplast. The photorespiratory pathway es-
sentially involves metabolism of glycolate to glycerate and
CO2 through reactions occurring in the peroxisomes, mito-
chondria, and chloroplasts. Metabolism of glycolate in the
peroxisomes occurs through glycolate oxidase which pro-
duces H2O2, and this could be the major source of H2O2

in many types of photosynthetic cells in the light (117, 295).
This H2O2 is mainly metabolized by a specific CAT isoform
(CAT2 in Arabidopsis, CAT1 in tobacco), and knockdown
and knockout lines for these enzymes in barley, tobacco, and
Arabidopsis have clearly demonstrated that photorespiratory
H2O2 is sufficient to produce characteristic changes in leaf
glutathione pools and to induce oxidative stress transcripts
and pathogen-linked reactions including, under some condi-
tions, cell death (56, 341, 351, 383, 397, 419).

Glycine formed in the peroxisomes is subsequently me-
tabolized to serine, CO2, and NH3 in the mitochondria, and
this is linked to the production of NADH in the mitochondrial
matrix at rates that in many conditions likely exceed those
occurring through TCA cycle reactions. Glycine oxidation is
thus an important process driving light-dependent changes in
mitochondrial NAD redox state (180, 181). While energeti-
cally overshadowed by chloroplasts in photosynthetic cells,
mitochondria play crucial roles in intracellular pyridine nu-
cleotide redox shuttles, and thus metabolic integration, opti-
mization of photosynthesis, and stress responses (100–102,
244, 297, 299, 301, 344, 348, 352).

C. Location and redox gradients in stress
response specificity

The orchestration of appropriate acclimation responses
requires a multilevel information cascade that starts with
signal perception, through signal transduction and amplifi-
cation, to induce primary and secondary responses in gene
and protein function. Unlike many other signaling molecules,
evidence has been found for ROS participation at all stages.
However, questions remain regarding specificity and loca-
tion. Different stress conditions are likely to produce different
ROS or at least to produce them through different pathways,
and this will also depend on cell or tissue type. However,
while simple physiological considerations identify a priori
favored pathways in different conditions, the picture is ob-
scured by secondary, possibly signaled, effects. For example,
ozone exposure not only causes ROS production on dissol-
ving in the apoplast but also through activation of secondary
reactions involving NADPH oxidases and organelles such as
the chloroplast (197, 312), while recent work has shown that
pathogen responses involve the mitochondria (101, 136, 352).

Whether ROS accumulation occurs through metabolic ac-
cumulation or through regulated bursts linked to activation of
appropriate enzymes, the location of ROS accumulation is
crucial in determining the secondary biochemical events and
the physiological outcome. For example, lipid peroxidation is
a primary event following ROS accumulation in the chloro-
plasts, whereas stomatal closure is the primary event fol-
lowing ROS accumulation in the guard cells as a result of ABA
action (230). The ABA-dependent formation of superoxide
and H2O2 is dependent on the production of superoxide via
the same RbohD and RbohF NADPH oxidases that are in-
volved in the pathogen response (230, 402) but no one to date
has suggested that stomatal closure results from oxidative
damage or that ABA signaling causes oxidative stress. These
observations emphasize the gross oversimplification of the
concept that suggests that low ROS concentrations lead to
signal transduction and acclimation=defense responses while
high levels lead to oxidative damage to lipids, DNA, and
protein, and, ultimately, cell death. Location and timing are
likely the key factors. The extent of synchronicity with parallel
or synergistic events such as calcium signatures or circadian
gene expression may be an important determinant of the
outcome.

D. ROS signal perception and transduction

Signal perception includes physical and chemical interac-
tions between the stimulus and a sensor or receptor. For
example, surface receptor-like protein kinases (RLKs) are
considered to play a fundamental role in sensing the external
environment and initiating the signal transduction process,
with as yet largely unidentified members of the plant RLK
super family classified as leucine-rich repeats (LRR) initiating
abiotic stress and ABA responses (311). It is currently con-
sidered that ROS produced at the cell surface signal through
oxidative modification of proteins such as sensor kinases or
gated Ca2þ channels and=or lipids and phospholipases that
may be proximally sited to the producing enzymes. Kinases
that are both induced by ROS and necessary for oxidative
signal transduction have been identified (12, 13, 347) and
oxidative signals are transmitted in plants as in animals by
MAP kinase cascades (14, 220, 466).

FIG. 12. Major NAD(P)H-producing and consuming
reactions in the cytosol. G6PDH, glucose-6-phosphate de-
hydrogenase; GR, glutathione reductase; GSH, glutathione;
GSSG, glutathione disulfide; ICDH, NADP-isocitrate dehydro-
genase; NAD(H)K, NAD(H) kinase; NTR, NADPH-thioredoxin
reductase; npGAPDH, nonphosphorylating glyceraldehyde-
3-phosphate dehydrogenase; RBOH, respiratory burst oxidase
homolog; TRXox=TRXred, oxidized=reduced thioredoxin.
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No ‘‘ROS receptor=sensor’’ has as yet been clearly identified
in plants. Given their reactive power, ROS could exert effects
on numerous components through the effects discussed be-
low in Section V,C, though transcriptional ‘‘master switches’’
likely control expression of multiple genes in response to gi-
ven ROS signals. A recently characterized transcription factor
controls nuclear expression of some chloroplast antioxidative
enzymes through thiol=disulfide exchange (374), while an-
other transcription factor, bZIP10, shuttles between the nu-
cleus and cytosol, where it interacts with the cell death
suppressor, LSD1, and thus influences cell death in response
to pathogens (200; see also Sections VII,B and VIII,B). This
latter system shares functional similarity with regulation
through the NFkB-B=IkB and Keap1-Nrf2 systems (374), as
does the action of plant NPR1 (280).

E. Oxidative and reductive signaling,
oxidative and reductive stress?

1. GSSG as an oxidative signal. We have previously
emphasized that ROS production, pyridine nucleotides, and
antioxidants are intimately connected (118, 291), and gluta-
thione status in particular has been proposed to be important
in relaying oxidative signals originating from H2O2 or other
ROS (125, 265). Either GSSG concentration or the glutathione
redox potential could be sensed via protein thiol=disulfide
exchange or glutathionylation of proteins. It is clear that GSSG
can accumulate to high levels in plants. This has been ob-
served in stress conditions such as pathogen attack, ozone,
and cold (37, 144, 263, 371, 415). The intimate relationship
between H2O2 and glutathione is evident from the spectacular
effects on the glutathione pool observed in plants deficient in
CAT (275, 292, 341, 351, 383, 436). In these systems, GSSG can
accumulate to values as high as 1 mmol.g�1 leaf fresh mass,
representing a global tissue concentration of *1 mM or up to
90% of the detectable glutathione pool (341). In Arabidopsis at
least, this huge accumulation can occur without detectable
tissue death (341). The role of APX is usually considered, like
CAT, to be limited to H2O2 removal (Fig. 1). However, APX
deficiency partly suppresses the phenotype of CAT-deficient
plants (351).

GSSG is unlikely to accumulate to levels that are measur-
able in extracts simply because of thermodynamic factors or
limitation by NADPH supply. The KM for NADPH of gluta-
thione reductase is <10 mM (103, 156), whereas free NADPH
levels are probably 100 mM or greater (180). Current concepts
suggest that GSSG accumulation occurs because the capacity
of GR is insufficient to keep pace with other enzymes in-
volved in H2O2 detoxification, either because these enzymes
have higher capacities (total extractable leaf activity of APX is
typically *10-fold higher than that of GR) or because other
reactions are catalyzed by several enzymes with partial re-
dundancy. Strong limitation by GR under conditions of in-
creased peroxidatic removal of H2O2 may be important to
allow rapid and sensitive changes in GSH=GSSG, as discussed
above in Section III,F,5. Such changes could then be signalled
via glutaredoxin modification of sensor proteins.

2. Reductive signaling in plants. Regulation of chloro-
plast enzymes by dynamic changes in redox potential has
been known in plants for several decades (10, 97, 442), and
involves the thioredoxin-mediated regulation of enzyme ac-

tivity in response to light=darkness (369, 370). Work over the
last decade has identified an ever-growing list of potential
thioredoxin targets (370). Thioredoxin regulation is now
known also to occur in other plant cell compartments such as
the cytosol and mitochondria (26, 233, 269, 346), and is me-
diated by a family of proteins that can be classed into different
groups (239, 269). Certain plastidial types of thioredoxins play
a role in peroxiredoxin-linked peroxide metabolism (48, 66,
424). The physiological and environmental factors that
determine thioredoxin function in extra-chloroplastic com-
partments remain to be fully characterized, though in pho-
tosynthetic cells these functions may be influenced by
chloroplast and apoplastic events (e.g., by redox shuttles, as
described in Section IV,A). At least one cytosolic thioredoxin
is implicated in plant responses to pathogens (234), and re-
ductive signaling has been described for the NPR1=TGA
transcription factor interaction in the regulation of the ex-
pression of pathogenesis-related (PR) genes, which are in-
duced in plants subsequent to certain types of pathogen
challenge (84, 280).

Like the mammalian Nrf2-binding protein, KEAP1, NPR1
contains the BTB=POZ domain that is associated with di-
merization and interaction with Cullin-3 proteins, and this
domain contains one of the two Cys responsible for NPR1
redox sensitivity (166, 280). The other Cys is situated in the
link region between the BTB=POZ domain and the ankyrin
repeat domain necessary for interaction with specific TGA-
type bZIP transcription factors (166). In addition to NPR1, five
NPR1-like genes exist in Arabidopsis. Recent data suggest
that NPR3 and NPR4 also function in pathogen responses,
though in an antagonistic fashion to NPR1 (469). Though
NPR3 and NPR4 have BTB=POZ and ankyrin repeat motifs,
they lack the Cys residue shown to be essential for retention of
NPR1 in the cytosol (280, 469), suggesting that they may be
redox-insensitive. Two other members of the NPR1 family,
BOP1 and BOP2 (for BLADE-ON-PETIOLE), contain both
conserved Cys residues found in NPR1 but they interact most
strongly with a TGA transcription factor that does not interact
with NPR1 (166). Double homozygous bop1 bop2 knockouts
show defects in floral patterning. Although redox-dependent
movement of BOP1 and BOP2 has not yet been described, it is
tempting to suggest that thiol=disulfide regulation could be a
very important in the regulation of plant development as well
as in stress responses. This hypothesis is entirely consistent
with data obtained for mutants in glutathione synthesis and
NADPH-thioredoxin reductase (346, 423). Further evidence of
a role for thiol=disulfide exchange in plant development
comes from the recent demonstration that ROXY1 and
ROXY2, two glutaredoxins with active site motifs found only
in terrestrial plants (238), play overlapping but essential roles
in flower formation (451). Together with observations on the
bZIP10-LSD1 interaction (200), the evidence from studies of
NPR1 suggests the existence of central cytoplasm-nuclear
shuttling mechanism for redox-sensitive proteins that oper-
ates in both oxidative and reductive signaling cascades.

Though some thioredoxin-regulated chloroplast enzymes
are activated by thiol oxidation (10), most are activated by
disulfide reduction. This involves increased reduction state of
a pre-existing pool of thioredoxins mediated by light-driven
reduction of ferredoxin (372), contributing to the regulation of
stromal metabolic pathways but also to the transfer of re-
ducing power from the stroma to the rest of the cell via the
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NADP-dependent malate dehydrogenase (Fig. 11; 18, 171,
271, 364). The mechanisms that drive the cytosolic reductive
signaling described above remain to be elucidated. If activa-
tion of NPR1 and similar proteins occurred solely through
induction or recruitment of thioredoxins or glutaredoxins
with appropriate affinities for specific protein targets, this
kind of redox regulation could occur independently of
changes in the redox potential of soluble reductant pools
(NADPH, glutathione). In this case, only a threshold con-
centration of reductant would be necessary. A distinct (or
additional) possibility is that certain stresses induce dynamic
changes in cytosolic NADP or glutathione pools. This would
be analogous to light effects on stromal thioredoxin pools, and
could in fact require light-driven reductant export from the
chloroplast, explaining some of the light dependence for cer-
tain stress responses. Although improved intra- and inter-
cellular spatial resolution is necessary to fully understand the
key events, there is some evidence that dynamic changes in
thiol status occur during pathogen responses (280, 296, 415). It
may also be significant that increasing glutathione, either by
exploiting plant transformation or by chemical intervention, is
sufficient to mimic induction of target genes by SA (69, 119).

3. Reductive stress in plants? The effects of dithiothreitol
(DTT) on yeast cells have been described as ‘‘reductive stress’’
and some yeast genes such as thioredoxin2 can be induced by
both H2O2 and DTT (408). Insufficiently oxidizing conditions
can interfere with protein folding in the endoplasmic reticu-
lum, mediated in plants, fungi, and animals by protein dis-
ulfide isomerases oxidized by homologous endoplasmic
reticulum oxyreductins such as Ero1 (90, 373). However, the
importance of reductive stress in compartments such as the
cytosol, chloroplast stroma, and mitochondrial matrix, which
maintain a highly reducing environment, remains to be de-
termined. Studies of knockout mice have reported that en-
hanced GSH:GSSG ratios driven by upregulation of both
G6PDH and GR are associated with defects in cardiac muscle
(343).

Two concepts of reductive stress can perhaps be distin-
guished. In the first, over-reduction of redox-active com-
pounds would favor production of ROS. Such effects are well

described in plants at the level of electron transport chains and
reflect increased oxidative burden (ROS production rates)
caused by over-reduction of autooxidizable compounds
(Fig. 4). The second type of reductive stress could involve
modifications of protein function through a drop in the redox
potential of pyridine nucleotides, thioredoxins, or glutathi-
one. Interestingly, engineering-enhanced contents of gluta-
thione in the tobacco chloroplast led to a marked drop in the
GSH=GSSG ratio accompanied by other symptoms com-
monly considered to be ‘‘oxidative stress’’ (69), though other
data suggest that this effect of increased chloroplastic gluta-
thione synthesis is not general to all plants (294). Never-
theless, ‘‘over-reduction’’ in specific compartments could play
a vital role in gene regulation through components such as
NPR1 and may partly explain some results in the literature.
Knockout Arabidopsis lines for leaf-expressed NADPH oxi-
dases show compromised ability to limit cell death in re-
sponse to pathogens (404). This may reflect the absence of a
ROS ‘‘survival’’ signal produced by NADPH oxidases at the
cell surface (see also Section VI,F). Alternatively or in addi-
tion, it could partly result from over-reduction of cytosolic
NADP pools. According to this second view, NADPH oxi-
dases would under some conditions function as alternative
respiratory pathways, much like oxygen reduction by the
chloroplast PET chain, and their physiological ‘‘functions’’
would include both relieving reductant pressure and pro-
ducing ROS (Fig. 13). Further information is required to re-
solve this issue (e.g., regarding the capacities of plant NADPH
oxidases). Another key issue is to what extent ROS produced
at the cell surface or in the apoplast interact with intracellular
antioxidative systems (Fig. 8). However, it should be noted
that even if these ROS are metabolized exclusively at the cell
exterior, this process is likely to involve ascorbate and thus
affect intracellular events because DHA produced outside the
cell has to be reduced to ascorbate by intracellular systems.

V. The ROS–Antioxidant Interaction
as a Stress Convergence Regulator

The notion of uniform ‘‘oxidative stress responses’’ in plant
cells is a highly simplistic generalization because, as noted in

FIG. 13. Cytosolic NADP redox state: At
the hub of reductive signaling? NADPH
can be produced in the cytosol (blue ar-
rows) by substrate oxidation (Fig. 12) or by
export of reductant from the chloroplast
and mitochondria through shuttles that
are particularly active during photosyn-
thesis (Fig. 11). As well as biosynthetic
processes, NADPH is required for respi-
ratory burst oxidase homolog (RBOH) ac-
tivity located at the plasmalemma and
peroxidase-linked H2O2 reduction. Among
other components, alternative mitochon-
drial NADPH dehydrogenases (altDH:
244, 344) may also be important in in-
fluencing cytosolic NADP redox state
through oxidation (red arrows). Although
not shown in this figure, ROS produced in
the chloroplasts, mitochondria, and per-
oxisomes could also impact cytosolic NADP redox state (Fig. 8). PX, peroxidase; RBOH, respiratory burst oxidase homolog.
SH=SS, thiol=disulfide.
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Section III,A, different cell types are primed to respond dif-
ferently to an oxidizing environment. Moreover, oxidative
stress responses also vary according to various biological
clocks and endogenous circadian rhythms in plants that
generate cycles of varying sensitivity to stress, as they do in
other organisms (416). The varying susceptibility of plants to
H2O2-mediated PCD is discussed below in more detail with
regard to the influence of photoperiod (Section VI,B). These
inherent features of the redox biology governing stress re-
sponses will be present even in plants grown in controlled
environment conditions and their effects are probably exac-
erbated in natural or agricultural environments, where spe-
cies become adapted to environmental variables. One notable
example of a valuable adaptive response is that of shade
species buried deep in forest canopies that can take advantage
of the brief periods of exposure to high light known as ‘‘sun
flecks,’’ enabling them to greatly increase their carbon gain
without incurring any inhibitory effects of high light expo-
sure due to their rapid and effective engagement of thermal
energy dissipation systems (227) that are often termed non-
photochemical energy quenching (NPQ) systems (174, 289).

Epigenetic controls are also increasingly acknowledged as
being important components of plant stress responses (46).
Stress memories from a single-generation exposure to stress
can be inherited through mechanisms involving DNA meth-
ylation, small mRNAs, and histone modifications that cannot
be explained by Mendelian genetics (46). The influence of re-
dox processes on these systems has not yet been characterized.
In contrast, our understanding the robust and complex signal
transduction pathways by which plants respond to the redox
signals generated by photosynthesis, particularly with respect
to light, has greatly increased over the past decade.

A. Excess excitation energy

Light is the driver of photoautotrophic growth and the
photosynthetic light-harvesting systems are adept at light
capture. However, the efficiency of light harvesting can be-
come a problem when it occurs in excess of the capacity that
light energy can be used to drive the PET chain. This can occur
frequently if transiently in natural environments where plants
are constantly exposed to fluctuating light conditions. Energy
that cannot be used to drive metabolism has been termed
‘‘Excess Excitation Energy’’ (EEE; 131, 203–205, 289, 290).

Information from the environment and metabolism is in-
tegrated in order to optimize plant growth and development
appropriately in relation to prevailing external and internal
conditions. Light has a major influence over plant stress re-
sponses, and this is possibly because the degree of stress, as
determined by the degree of oxidative burden, is exacerbated
many-fold in the light compared to darkness. Plants cannot
attenuate light energy absorption in the short term, though
they can dissipate a portion of the absorbed light energy as
heat. Despite this, the amount of absorbed light energy is of-
ten in excess of that immediately useable by photosynthetic
metabolism. The balance between light capture and light use
in photosynthesis is influenced by most if not all environ-
mental fluctuations. It is probably a key driver of the inte-
grating ‘‘convergence regulator’’ mechanism described for
ROS and related redox systems in biotic and abiotic plant=
environment interactions. The regulation of photosynthesis is
geared to minimising EEE and avoiding excessive ROS for-

mation through the photosynthetic control of electron trans-
port and thermal energy dissipation (120).

B. Acclimation strategies

The light-harvesting antenna systems and PET chain are
highly efficient at low light intensities. However, too much
light can damage PSII and enhance the probability of singlet
oxygen generation and subsequent lipid peroxidation (407).
Plants have thus evolved both rapid short-term and long-term
acclimation strategies to deal with the changes in the condi-
tions of their growth environment. The photosynthetic state
transition, which is a short-term acclimatory response to low
light involving LHCII phosphorylation following activation
of the STN7 kinase, balances excitation energy distribution
between the photosystems (36, 174, 201, 353). The NPQ
mechanisms, which respond to light intensity, not only pro-
vide a safety valve that reduces excitation energy pressure in
PSII but they are also considered to act as a ‘‘light intensity
counter,’’ providing the photosynthetic membrane with a
‘‘memory’’ of the light-exposure history of the leaf (174). The
extent of NPQ is governed by at least three factors: the extent
of the DpH that is generated across the thylakoid mem-
branes, the de-epoxidation state of the xanthophyll caroten-
oids, and the PsbS protein. In addition to the acclimation
processes such as state transitions which balance the excita-
tion energy between PSI and PSII in response to short-term
fluctuations in light intensity and quality, longer-term chan-
ges in the environmental light conditions provoke readjust-
ments in PS stoichiometry and PET composition (64). This
process is achieved through a signaling network involving
signaling components such as plastoquinone and the cyto-
chrome b6=f complex that regulate the activities of the thy-
lakoid protein kinases such as STN7, STN8, and CSK in order
to achieve the coordinated control of genes in the chloroplast
and nucleus (353). Moreover, systemic as well as local signals
rapidly transmit information concerning light intensity
from exposed to distal shaded leaves (359). This photo-
protective signaling system, known as systemic acquired ac-
climation (SAA), involves the expression of the ZAT10 zinc
finger transcription factor and produces similar changes in
global gene expression in shade leaves to that observed in
exposed leaves. SAA enhances tolerance to oxidative stress
and thereby allows nonexposed leaves to pre-acclimate to
potential exposures to a high light environment. Constitutive
ZAT10 overexpression increased the expression of anti-
oxidative genes and enhances tolerance to exogenous H2O2 as
well as high light (359).

Such acclimation responses maintain or restore photo-
synthetic electron flux under adverse environmental condi-
tions and help keep net energy conversion as high as
possible. Thus, they often have consequences far beyond
primary metabolism because chloroplasts are not only the
site of metabolic energy production and carbon fixation but
also house key parts of most biosynthetic pathways, in-
cluding reactions of nitrogen and sulfur assimilation, syn-
thesis of tetrapyrroles, production of secondary metabolites,
as well as several major plant hormones. The abundance
of these compounds intricately depends on the appropri-
ate functioning of the photosynthetic apparatus. Whereas
efficient photosynthesis under light-limiting conditions is
achieved by optimal distribution of excitation energy be-
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tween the photosystems, exposure to high light necessitates
the safe dissipation of excess excitation energy as heat to avoid
over-reduction of PET carriers and decrease the probability
of singlet oxygen formation at PSII. Moreover, optimal en-
ergy balance between PSII and PSI also depends on other
environmental cues and stress factors.

Short-term acclimation mechanisms to a changing light
environment such as state transitions, energy-dependent
quenching, and other nonphotochemical mechanisms serve to
modify the efficiency of the light reactions (78, 173, 289, 290).
Other pathways such as cyclic electron flow, export of re-
ductant from the chloroplast, and delivery of electrons di-
rectly to molecular oxygen in pseudocyclic electron flow,
also serve to protect the PET system and decrease the prob-
ability of singlet oxygen formation at PSII (15, 364). More
long-term acclimation to high light requires adjustments in
the composition of the reaction center and light-harvesting
pigment protein complexes. Through a complex interplay of
environmental, phytohormone and nutritional=metabolic
signals, a large number of such adjustments alter plant
growth and development through what have been called
‘‘stress-induced morphogenic’’ responses (333).

C. Protein modifications

Proteins can be oxidatively modified in many different
ways, involving diverse amino acid residues. A key distinc-
tion is whether oxidative modifications are reversible (140).

1. Protein thiols. The reversible redox modulation of Cys
residues is perhaps the simplest mechanism for the ROS-
mediated activation of mitogen-activated protein kinase
(MAPK) pathways. It is entirely possible that MAPKs are
activated by oxidation, while specific protein phosphatases
are inhibited by oxidation (154). Oxidative modifications of
protein Cys thiol groups can involve formation of disulfides
with other protein thiol groups or soluble thiols such as glu-
tathione, as well as production of more oxidized sulfur states
(sulfenic, sulfinic, and sulfonic groups). Thiol modification is a
canonical mechanism of oxidative signaling, for instance, in
the bacterial oxyR and the yeast Yap1 systems (17, 75). For-
mation of highly oxidized Cys residues (sulfinic and sulfonic
groups) was once classed as irreversible ‘‘damage’’ but sulfinic
acids have been shown to be part of the catalytic cycle of
certain peroxiredoxins (40, 57).

2. Glutathionylation in plants. There is growing interest in
the potential importance of protein glutathionylation in
mammalian cells (70), and recent work in plants has identified
proteins that may be regulated by this process in vivo (91, 171,
184, 270, 462), though the mechanisms remain unclear. It
is considered that glutathionylation is unlikely to occur by
uncatalyzed exchange with GSSG in animal cells (70, 112).
As well as roles in assembly of iron–sulfur clusters (186),
glutaredoxins may play several roles in catalyzing protein
thiol–disulfide exchange, including promoting either glutathi-
onylation or the reverse reaction (35). Like thioredoxins, gluta-
redoxins are encoded in plants by a large gene family of several
types, including plant-specific glutaredoxins (238, 269).

3. Protein methionine oxidation. Another possible redox
mechanism by which ROS could regulate signaling pathways

involves the reversible oxidation of Met residues. Methionine
residues are readily oxidized by mild stress to sulfoxide forms
(MetSO), and this can be reversed by peptide methionine
sulfoxide reductases (PMSR). Methionine oxidation produces
two MetSO stereoisomers, each of which is reduced by a
specific enzyme. PMSRA reduces the S stereoisomer, while
PMSRB reduces the R form. Cytosolic PMSRA2 and chloro-
plastic PMSRA4 have both been implicated in oxidative stress
tolerance (32, 356).

4. Carbonyl group formation and other protein modi-
fications. One consequence of excessive oxidation is irre-
versible oxidative damage to proteins. Oxidative damage
occurs primarily on side chains of amino acids such as Pro,
His, Arg, Lys, and Thr, and produces ketone or aldehyde
derivatives (protein carbonyls) that are reactive with 2,
4-dinitrophenylhydrazine (DNPH). Other forms of protein
oxidative damage can occur by reaction with lipid peroxida-
tion products, or by conjugation with sugars (glycation) or
their oxidation products (glycoxidation). Highly oxidized
proteins, which are found in all cellular compartments, are
generally assumed to lose their catalytic activity (73, 277, 334).
Although ‘‘damage’’ may be a useful term for oxidation-in-
duced loss of function at the protein level, it is misleading
when applied at levels of greater complexity (e.g., whole cells,
tissues, or organisms). This is because protein oxidation is
controlled by development in Arabidopsis (196) and maize
(Fig. 14), as well by the nature of the environmental stress
(209,229). In seeds, carbonyl formation on specific proteins
has been implicated in the control of germination (308), while
the extent of leaf protein carbonylation increases progres-
sively during the vegetative growth of Arabidopsis rosettes
and then decreases dramatically just prior to bolting and re-
productive development (196). Similarly, the extent of leaf
protein carbonylation is greatest in the youngest source leaves
of maize plants at the flowering stage and least in the oldest
source leaves (Fig. 14). The large subunit of Rubisco and
the regulatory protein Rubisco activase are among the major
oxidized proteins in Arabidopsis leaves (73, 196). Oxida-
tive cleavage of chloroplast proteins such as chloroplastic

FIG. 14. Development-dependent accumulation of pro-
tein carbonyls in maize source leaves. The abundance of
protein carbonyl groups, measured using the OxyBlot�
Oxidized Protein Detection Kit, is shown for all leaves on the
stem from the oldest source leaf (leaf rank 1) to the youngest
source leaf (leaf rank 12).
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glutamine synthetase caused by oxidative carbonylation of
His residues (183) has been well characterized (135).

5. Processing of oxidized proteins. In the case of Rubisco,
enhanced cellular oxidation caused, for example, by exposure
to high light, can lead to loss of activity related to redox
modulation of Cys residues, rather than protein carbonylation
(278). Within the chloroplast, oxidation of critical Cys resi-
dues enhances the binding of the Rubisco protein to the
chloroplast envelope membranes, marking the protein for
degradation (251, 278). The degradation route for irrevers-
ibly oxidized proteins remains somewhat controversial but
the current evidence points to a ubiquitin-dependent degra-
dation system involving the 20S proteasome (20SP) (187).
Disruption of cytokinin metabolism has been shown to trig-
ger the degradation of carbonylated proteins in detached
Arabidopsis leaves (187). The degradation of carbonylated
proteins was blocked in Arabidopsis mutants when the
ubiquitin-proteasome system was inhibited (187). Similarly,
an increased capacity for ubiquitin-independent proteolysis
enhanced removal of oxidized proteins and increased toler-
ance to oxidative stress (229). While the 20SP appears to be
much more resistant to oxidation than other components of
the ubiquitin–proteasome system, exposure to oxidative stress
also induces nonspecific autophagocytic pathways of protein
degradation (452).

Oxidized Rubisco protein may exit the chloroplast through
the stromules, which appear to interact with cytoplasmic
vacuole-type compartments through the vesicular trafficking
system (63, 336). Thereafter, Rubisco degradation products
appear in the vacuoles (178). This process is important in
young (336) as well as senescing leaves (172, 247, 306).
However, if Rubisco breakdown is blocked by the constitutive
ectopic expression of a Cys proteinase inhibitor, then the
protein accumulates and activity is increased during stress
and natural senescence, suggesting that the Rubisco turnover
process has feedback mechanisms related to the reversible
redox modulation of Cys residues (336).

D. Revising the ‘‘damage’’ concept

The use of terms such as ‘‘oxidative or photo-oxidative
damage’’ continues in the plant research community. This
concept holds that ROS exert their effects through indiscrim-
inate widespread inactivation of cellular functions. However,
the last decade has witnessed an explosion of interest in ROS
and their roles in signaling in plants. Among the many ad-
vances in this field, the following key developments can be
identified. The first is the identification in plants of specific
enzyme systems important in induced ROS generation (230,
362). The second is that ROS such as H2O2 are modulators
of gene expression through signaling components such as
kinase cascades (12, 13, 220, 347). Third, ROS-activated
kinase-dependent pathways also play a key role in hormonal
signalling and development (134, 347). Thus, as in animals
(389), H2O2 is considered to be an important signaling mole-
cule in plants. Perhaps an even more striking conceptual shift
has concerned singlet oxygen, until recently considered a very
reactive (and, therefore, potentially toxic) molecule. Recent
advances have shown that tissue death in response to singlet
oxygen is largely under genetic control (237, 428). Similarly, as
discussed further below in Section VII,B, H2O2-driven cell

death in CAT-deficient plants is not simply caused by the
extent of oxidative stress but is under the control of day length
(341).

These and other results have led to a paradigm shift in
which ROS are no longer considered to be damaging mole-
cules that cause cell death by indiscriminate oxidation, but
rather molecules that exert their effects through specific sig-
naling pathways (119). With regard to ROS-triggered protein
degradation, the term oxidative damage is understandable, as
oxidized proteins can form aggregates or bind to membranes
and induce PCD. However, even this process is likely to re-
quire active participation of dedicated cellular machinery (i.e.,
is not simply an unavoidable deleterious process). Although
the terms ‘‘damage’’ and ‘‘signaling’’ are ultimately interpre-
tative terms that do not affect the underlying mechanisms,
their implications can be distinguished. Key distinctions are
specificity and inevitability. Whereas oxidative damage
would be largely nonspecific, leading to the accumulation of
irreparable oxidations of nucleic acids and proteins, oxidative
signaling should be reversible, with regulatory circuits. If
oxidative modifications operate primarily or exclusively
through signaling components, the outcomes are likely to be
more amenable to modification through plant breeding or
transgenic manipulation (see Section IX). In the following
Sections, we will discuss specific examples of ROS-mediated
processes within the context of the ongoing debate of ‘‘dam-
age’’ versus ‘‘signaling’’ paradigms. The choice of paradigm
has a crucial influence on the interpretation of the physio-
logical importance of experimental data and on avenues of
future inquiry. Ultimately, it will influence attempts to un-
derstand and=or manipulate living cells, whether they are
pathogenic bacteria, mammalian cancer cells, or plant cells
susceptible to disease.

E. Singlet oxygen signaling

Singlet oxygen, like superoxide and H2O2, has long been
regarded as potentially toxic to the chloroplast, not least be-
cause of the danger of the oxidation of chloroplast lipids that
contain high contents of polyunsaturated fatty acids (PUFAs).
Hence, there is a long history of papers considering such
chloroplast redox processes in terms of ‘‘oxidative or photo-
oxidative damage’’ with nonenzymatic lipid peroxidation as a
primary event in photo-induced oxidative stress in chloro-
plasts.

Much of our current understanding of how singlet oxygen
induces PCD has come from studies on the conditional flu
Arabidopsis mutant, which accumulates photosensitizing
chlorophyll precursors in the dark and therefore generates
singlet oxygen upon subsequent illumination. While a rela-
tively large number of genes have been identified as singlet
oxygen-inducible (11, 236, 307), the mechanism of signal
transduction is unknown. Singlet oxygen is generally con-
sidered to have a relatively short life-time of 200 ns (146), but it
has recently been suggested that it may be able to diffuse
further from the site of production than first thought, partic-
ularly during stress (109). Nevertheless, it is probable that
singlet oxygen reacts with molecules in the chloroplasts that
act as sensors. Attractive candidates for the sensing function
are PUFAs (337), chlorophyll, and lipid-soluble antioxidants
such as carotenoids and tocopherol. The oxidation of PUFAs
leads to a wide range of metabolites called ‘‘oxylipins,’’ some
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of which are involved in signaling (107), as observed in plant–
pathogen interactions and wounding (250, 266, 432). Simi-
larly, the signaling functions of intermediates of tetrapyrrole
and chlorophyll biosynthesis have been characterized in
chloroplast to nucleus retrograde signaling (391).

Exposure of the conditional flu mutant to conditions that
allow singlet oxygen formation causes leaf bleaching and
accumulation of oxylipins (OPDA and JA) (337). Both re-
sponses are abrogated by introducing the executor1 mutation
into the flu background. However, genetically blocking oxy-
lipin synthesis is not sufficient to prevent the phenotypic re-
sponse, though it does modify the expression of subsets of
singlet oxygen-induced genes (337). In etiolated flu seedlings,
in which the singlet oxygen sensitizer accumulates to very
high levels, transfer to light causes tissue collapse that cannot
be prevented by the executor1 mutation and which is accom-
panied by accumulation of fatty acid hydroperoxides pro-
duced through nonenzymatic reactions (337). Rather than
signaled PCD, this executor1-independent response was in-
terpreted as the result of indiscriminate damage both due to
very high levels of singlet oxygen and lack of scavenging
carotenoids and tocopherols in pigment-deficient etioplasts
(337). Regardless of the mechanisms, singlet oxygen signaling
pathways appear to be different and even in opposition to
those of other ROS such as superoxide (133). This specificity is
allowing the identification of genes that are regulated by
different ROS. Singlet oxygen-mediated gene expression was
found to account for the largest fraction of ROS-inducible
genes under various abiotic stresses (133). Thus, both H2O2

and singlet oxygen are important in plant acclimation re-
sponses as well as the PCD responses (236, 285).

F. What and where are oxidative bursts?

The plasma membrane oxidative burst catalyzed notably
by NADPH oxidases and activating calcium-dependent pro-
tein kinases (214) plays a central role in the plant innate im-
mune response (24, 439). This oxidative burst consists of either
mono- or biphasic ROS accumulation and is perhaps one of
the best characterized plant responses to biotic and abiotic
triggers (24, 93, 249, 368, 378, 415, 439). The initial burst or
accumulation of ROS is mainly attributed to the rapid acti-
vation of plasma membrane-bound NADPH oxidases (82,
402–404). Although the identification of NADPH oxidases
and their subsequent genetic analysis, as well as their estab-
lished roles in animal systems, has led to them receiving most
attention, it is noteworthy that the plant apoplast contains
numerous other types of enzymes that could be responsible
for ROS production. These include peroxidases and several
types of oxidases, including oxalate oxidases and amine oxi-
dases (Fig. 8; 39, 43, 279). The superoxide or H2O2 produced
has been considered to diffuse through the cell wall or per-
meate the cell membrane to alter cellular redox homeostasis.
However, given the powerful intracellular antioxidative sys-
tem, interactions with vicinal redox-sensitive proteins or ion
channels may be more important. Redox gradients across the
plasma membrane could be also be a significant signal-
transducing mechanism in terms of secondary events such as
calcium release, as previously discussed (118).

The plasma membrane oxidative burst associated with
plant pathogen responses has often been discussed in terms of
induction of cell death, but this has recently been questioned

(136, 404). In fact ROS produced during the oxidative burst
could play a central role in the survival signaling process that
induces the expression of defense genes in the cells sur-
rounding those undergoing PCD. Moreover, regulated oxi-
dative burst phenomena play indispensable roles in key
physiological and developmental processes that do not in-
volve a PCD response such as stomatal closure and root hair
growth (111, 134, 320, 431). Such studies clearly indicate that it
is not just the amount of ROS that matters in initiating an
appropriate response but the precise location of the burst
leading to ROS accumulation. Moreover, an increase in ROS
invariably leads to an increase in NO and vice versa (466), and
the ROS=NO ratio in a given cellular compartment could be
more important than the ROS level alone (358). Interestingly,
carbon monoxide, which can be endogenously produced by
degradation of heme, has also been found to interact with
ROS and the glutathione system in plants in stress conditions
(158). Although PCD can be accomplished by high concen-
trations of H2O2 adding externally to cells, it is worth noting
that lesions in mutants that accumulate singlet oxygen (307)
or that are deficient in CAT (56, 341, 397, 419) are caused by
intracellular triggers, and that genetic analysis of NADPH
oxidase function pointed to a possible function of ROS in
counteracting the death response (404). While dose effects
have traditionally been considered a useful model for ex-
plaining differential effects of high and low concentrations
of ROS, the proximity of receptors or sensing mechanisms
is likely a key factor (112). Similarly, the site of the burst,
whether intracellular or extracellular, can be targeted very
precisely when vesicle trafficking is involved and H2O2 con-
taining vesicles are drawn to a small focal point on a mem-
brane where a receptor is localized.

The finding that double antisense plants deficient in both
CAT or APX have a less severe phenotype than single anti-
sense plants (351) also suggests that overall cellular tolerance
to oxidative burden is not governed simply by the balance
between ROS and antioxidant enzymes. This view is further
supported by the generation of ROS as secondary messengers
during growth and movement responses initiated by plant
hormones such as auxin and ABA. These hormones use
common elements of signal transduction and=or amplifica-
tion, particularly the activation of enzymes such as NADPH
oxidases that affects enzymes involved in other hormone
metabolism and signaling pathways as well as that regulating
protein turnover (14, 43, 143, 163). Further evidence comes
from the finding that H2O2-driven cell death in CAT knock-
outs is not simply a question of the degree of oxidative stress,
but is dependent on photoperiod (341; see Section VII,B).

VI. Redox Crosstalk with Other Pathways

Stress-induced oxidative bursts and associated redox sig-
naling are highly complex and often involve separate bursts of
ROS production originating from different sources within the
plant cell, some local and some remote from the initial stim-
ulus, followed by waves of amplified signals (119). Exposure
to ozone, for example, triggers a local time-dependent, plasma
membrane NADPH oxidase-catalyzed biphasic oxidative
burst, involving an initial rapid transient burst of ROS pro-
duction, followed by a second prolonged phase of ROS
accumulation (249, 368). However, often only the second
prolonged phase of ROS accumulation is observed upon
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exposure to stresses such as xenobiotics or heavy metals such
as cadmium (305, 357). The accumulation of ROS in chloro-
plasts has also been observed in response to certain stress sit-
uations or specific triggers such as the induction of PCD by the
bacterial elicitor, harpin (136). Similarly, the stress-dependent
accumulation of ROS in mitochondria has long been linked
to PCD death processes in animals (299). In the following Sec-
tions we discuss how redox signaling including bursts of ROS
accumulation, interact with other plant signaling systems such
as phytohormones, sugars, and light acclimation pathways.

A. Redox–phytohormone interactions

It has become impossible to discuss ROS and redox sig-
naling in plants without considering plant hormones and
related signal molecules as it is now apparent that these
compounds act together with redox-modulated signaling
pathways to process and transmit environmental inputs
in order to produce appropriate responses. Compounds in-
teracting strongly with redox processes include classical
hormones such as auxins, ethylene, and ABA, as well as de-
fense-related signals such as SA and JA (58, 131, 259, 260, 283,
284, 312). The following discussion briefly focuses on the three
most studied compounds in defense and stress reactions,
though it is now clear that redox state also interacts with other
hormones that are key factors in plant development.

1. Salicylic acid. This signal molecule can be produced by
two pathways, one through isochorismate (435) and the other
through phenylalanine ammonia lyase, the first enzyme of the
phenylpropanoid pathway that also produces structural
polymers such as lignin and multiple families of phenolic
compounds with antimicrobial, antioxidant, and other bio-
logical activities (92). Salicylic acid is thought to amplify ROS
signals in a feedback reinforcement loop (378). Indeed, in-
duction of PR genes in CAT-deficient tobacco can be pre-
vented by engineering low SA levels (56, 397). H2O2 and SA
interact significantly with photoperiod signaling, as discussed
further in Section VII,B.

2. Jasmonic acid. The octadecanoid pathway involves
the key regulatory enzyme, lipoxygenase (LOX), that uses li-
nolenic and linoleic acid as substrates (232, 409) and leads to
the synthesis of oxylipins such as JA with antipathogenic and
regulatory activities (176). While SA has been intensively
studied in connection with its role in plant responses to
pathogenic microorganisms (388), the octadecanoid pathway
has been largely considered to be a key signaling path-
way involved in direct defense against insects (266). However,
the specificity of a stress response is given by ‘‘crosstalk’’ be-
tween different pathways that can suppress or enhance acti-
vation of other pathways through impinging on common
signaling nodes (409, 463). An early response to singlet oxy-
gen accumulation in the flu mutant is production of 13-
hydroxyoctadecatrienoic acid (13-HOT), an intermediate in
JA synthesis (307). Singlet oxygen, like the hydroxyl radical,
can cause nonenzymatic peroxidation of fatty acid chains to
produce molecules such as phytoprostanes (282). The result-
ing hydroperoxides are distinct from those produced enzy-
matically and current evidence from metabolite profiling
suggests that the enzymatic path is the most important, at
least in singlet oxygen signaling from the chloroplast (337).

3. Abscisic acid. This phytohormone has important
functions in plant development, metabolism, and physiology,
particularly in the control of stomatal closure, and also in
biotic and abiotic stress responses (199, 241, 354). Intriguingly,
human granulocytes both produce and respond to ABA (50).
In plants, ABA-dependent bursts of H2O2 regulate stomatal
closure (320, 431). The application of ABA leads to ROS ac-
cumulation with the calcium=calmodulin system acting up-
stream and downstream of H2O2 (177). Phospholipase D and
its lipid product phosphatidic acid, can also be induced as
part of the H2O2 response in functions as diverse as ABA
signaling, root hair patterning, and various stress responses.
Interactions with NO have also been demonstrated: ABA-
induced H2O2 production has been shown to mediate nitric
oxide (NO) generation in leaves (466) and stomata (47).
Emerging data suggest that ABA is an integral part of some
aspects of long-distance H2O2 signaling (Fig. 15).

B. Redox and sugars: The hormone link

Additional complexity arises from the integration of re-
dox and other metabolic signals such as sugars, particularly
in response to phytohormone triggers (68). The regulation of
starch synthesis, for example, involves thioredoxin-dependent
modulation of ADP-glucose pyrophosphorylase activity that
is responsive not only to trehalose metabolism (215) but also
the SnRK cascade, which is a major regulator of plant stress
and energy signaling (20). Sugars are the dominant metabolic
currency of many cells, from microorganisms to plants and
mammals. Sucrose is the major end-product of photosynthesis
and, with some exceptions, is the major transport form be-
tween plant cells, in contrast to many other groups of organ-

Stomatal closure
Tropic movement

Root hair formation

Light 
acclimation/stress 

responses

H2O2

Long distance signaling

Local signalingABA

ABA

FIG. 15. H2O2 and abscisic acid (ABA) interactions in the
regulatory circuits of local and long-distance signaling in
plants. This simple model illustrates that phytohormone-
dependent H2O2 signaling can not only act locally in the
orchestration of cell growth and movement responses but
also in long-distance signaling functions. We postulate that
local H2O2 accumulation may stimulate the movement of the
phytohormone signal to cells far removed from those expe-
riencing the original stimulus and lead to enhanced H2O2

production and signaling in these remote cells that is im-
portant in the orchestration of acclimation responses.
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isms (104). ROS generated in response to hormone action of-
ten influence metabolic processes that are also regulated or
affected by sugars (68, 246, 335). Sugars can repress certain
metabolic processes that generate ROS such as fatty acid mo-
bilization and peroxisomal b-oxidation but they can also favor
ROS production. Sucrose induces miR398, a microRNA which
post-transcriptionally regulates specific mRNA targets in-
cluding two Cu=Zn SODs, which are repressed when miR398
is abundant. Hence, miR398 is considered to act as a sucrose-
modulated translational regulator of SOD.

The orchestration of gene expression in response to sugars is
modified in plants exposed to environmental stresses (246, 335,
399). Sugar starvation can also enhance ROS accumulation and
increases the expression of antioxidant genes such as CAT (67).
Like ROS, sugars activate plant defense pathways (14, 273,
310), influence the expression of PR proteins (19, 167, 399), and
play a central role in plant stress responses (246, 288, 392).

Cross talk between sugar and hormone signaling path-
ways has been demonstrated for several phytohormones, in-
cluding ABA, gibberellins (141, 321), ethylene (137), auxins,
and cytokinins (161). Accumulating evidence of the extensive
dialogue between the sugar and ABA signaling pathways
suggests that they have a pivotal relationship in plant growth
and defense responses with multiple sites of reciprocal con-
trol. The germination and seedling establishment phases of
plant growth are sensitive to both ABA and sugars, which
together control developmental events (355, 376, 449). More-
over, ABA synthesis and signaling are important in the con-
trol of lateral root growth in response to sugar and nitrogen
signals (83, 380). The similar cellular and molecular responses
to ABA observed in human and plant cells suggest the pos-
sibility of common perception and signaling mechanisms (50).

VII. Light Sensing in Plants

A. Plant photoreceptors

The plant cell is equipped with sophisticated light-sensing
mechanisms that are localized in the plasma membrane, cy-
tosol, chloroplasts, and nucleus. Light responses are mediated
by at least three types of photoreceptors: phytochrome,
cryptochrome, and phototropin (65, 205, 242, 363). The best-
characterized light-dependent effects on plant development
and architecture are mediated by phytochrome (363). Photo-
tropin appears to control light-induced movement responses
such as phototropisms, chloroplast relocation, and stomatal
opening. Phytochrome is active at long wavelengths of the
visible spectrum, absorbing predominantly red light and far-
red light. Conversely, cryptochromes and phototropins
monitor blue light and ultraviolet-A, respectively (3).

B. Photoperiod and redox signaling

Redox homeostasis is influenced by photoperiod as well as
light quantity (34) and recent work suggests that photoperiod-
derived signals are a crucial orchestrator of the functional
outcome of ROS signaling. Cryptochromes have been shown
to participate in EEE responses (212) and in singlet oxygen
signaling (71). The Arabidopsis line lesion simulating disease 1
(lsd1) is one of many lesion mimic mutants that present
spontaneous cell death on the leaves in the absence of path-
ogen challenge (Fig. 16). It was initially characterized by a
superoxide-dependent spread of necrotic lesions that develop

under long or continuous photoperiods or after infection with
an avirulent pathogen (85, 185). Subsequently, it has been
shown that cell death in this line is at least partly attenuated
by high CO2, implicating photorespiratory H2O2 as part of the
triggering signal (259). Other Arabidopsis lines that show
spontaneous lesions include mutants for a negative regulator
of the phytochrome signaling pathway (138). The effects of
both these mutations are linked to SA, and phytochrome
knockout mutants are compromised in the establishment of
pathogen responses (139, 151).

Recent work in Arabidopsis cat2 mutants has established
that day length context determines the response to H2O2

produced through the photorespiratory pathway (341). In
short days, CAT deficiency causes strong upregulation of
glutathione and defense genes, whereas H2O2 only leads to
cell death in long days (341). Long-day-dependent H2O2-
induced cell death involves SA (authors’ unpublished obser-
vations). Thus, there is significant interplay between photo-
respiratory H2O2, SA, and photoperiod signaling in
determining cell death and stress resistance in Arabidopsis.
Like ascorbate (authors’ unpublished observations), gluta-
thione synthesis and contents may be under phytochrome
control: a mutant identified in an arsenic resistance screen was
defective in phytochrome A and had enhanced contents of
glutathione and its thiol precursors (393).

C. Electron transport chains as light sensors
and signal emitters

As well as the well-described systems of light sensing dis-
cussed above, for which genes are now annotated and an
increasing number of physiological functions elucidated, the

FIG. 16. ROS are important signaling hubs in the inter-
acting pathways that govern light -and pathogen-mediated
cell death responses in Arabidopsis. LSD is a negative
regulator of plant programmed cell death, and hence its
absence in the lsd1 mutant leads to a light-induced cell death
phenotype, as illustrated on the left, that is associated with
extensive ROS accumulation. The LSD pathway interacts
with plant defense components such as EDS1, PAD4, and
EIN 1, as illustrated on the right.
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PET chain is an important sensor of light quantity and quality
through redox poise and reduction state of specific carriers
such as the plastoquinone pool, coupled to proteins such as
CSK and STN7 kinases (162, 202–205, 259, 260, 284, 289, 290,
324) and transcription factors such as ZAT 10 (359).

Singlet oxygen is one of many signals originating in chlo-
roplasts that modulate nuclear gene expression in retrograde
signaling. Other relevant redox-related retrograde signals are
either derived from or are generated by (a) changes in basal
antioxidant metabolism and organellar redox state (25); (b)
the accumulation of other ROS; (c) metabolites in and flux
through the tetrapyrrole biosynthetic pathway; and (d) the
rates of organelle protein synthesis. Although the molecules
that relay information through the cytosol to the nucleus re-
main to be identified, the tetrapyrrole Mg-protoporphyrin-IX
(391) and the nucleic acid binding GUN1 protein (219) have
been identified as putative signaling components. Others in-
clude ACD2 and red chlorophyll catabolite (459). The long-
term acclimation responses to changes in the quantity and
quality of available light, and the SAA signal=response sys-
tem (359) involve the concerted regulation of nuclear and
chloroplast gene expression. The role of PET redox potential
changes, ROS, and selective protein turnover of light har-
vesting complexes and other proteins associated with the
photosynthetic processes, is well documented (4, 21, 99, 325–
327). As mentioned above, ROS have been discussed in terms
of local and systemic signals that can influence and interact
with other components systems to coordinate effective pro-
tection of chloroplasts in locations remote from those experi-
encing EEE (205, 284, 359).

VIII. Longevity, Senescence, Death,
and Oxidative Stress in Plants

Genetic studies in aerobic organisms from Caenorhabditis
elegans to plants to mammals have demonstrated that ex-
tended longevity is frequently associated with increased
tolerance to oxidative stress (255). The analysis of different
late-flowering Arabidopsis mutants has indicated that such
tolerance is correlated with flowering time and longevity
(228). For example, increased resistance to oxidative stress is
observed in lines carrying mutations in the GIGANTEA
protein, which is involved in red light signaling, central
clock function, and flowering time regulation (254). Simi-
larly, the flowering Arabidopsis mutants, ore1, ore3, and ore9,
are also more tolerant to various types of stress (444, 445).
These data add to the links between photoperiod and stress
responses discussed above. From a physiological point of
view, they might be understood in terms of resistance in
short days but death=flowering programs in long days. If
this is so, it would be interesting to examine these questions
in other species that do not show the same light response as
Arabidopsis, which is a quantitative long-day plant (i.e.,
flowering is not absolutely dependent on exposure to light
periods longer than a critical value but is gradually accel-
erated by increasing day length).

Factors that enhance tolerance to stress can modulate
cold acclimation and also extend lifespan by retarding
growth and development. Such factors include the C-repeat=
dehydration-responsive element binding factor (CBF), that
binds to promoter-region cis-acting C-repeat (CRT) dehy-
dration responsive elements (DRE) (142). As temperature is

one of the key environmental factors determining plant
growth, and cold acclimation an important determinant of
survival in low temperatures, it is interesting that the CBF
pathway is universally present in those plant species stud-
ied, even those that do not show cold acclimation (e.g., corn,
tomato). Arabidopsis shows excellent cold and freezing tol-
erance, and constitutive CBF overexpression leads to growth
retardation. Overexpression in species that do not have cold
acclimation traits produces similar growth retardation but
also induces tolerance to oxidative and other stresses (468).
The interpretation of such observations is that common
factors are used to limit growth and delay senescence while
enhancing stress tolerance because this strategy enhances
plant survival by delaying reproductive development until
favorable growth conditions return. The genes involved
in cold acclimation (COR genes) are regulated by ABA-
dependent and -independent pathways that regulate a range
of stress responses such as drought and salinity, in addition
to cold (456). Downstream components of hormone signal-
ing pathways such as ERF proteins that bind to GCC-box,
DRE=CRE, CE1, and JERE elements, are involved in modu-
lating plant tolerance to multiple stresses. They also regulate
ROS signaling pathways through activation of genes in-
volved in defense metabolism (398).

A. ROS and antioxidants in plant senescence

Plant senescence is a developmentally regulated process
that can be induced prematurely by stress or by hormones
such as ethylene, auxin, ABA, SA, and JA (52, 53). Leaf
senescence begins with the loss of photosynthetic compe-
tence and degradation of photosynthetic proteins in the
chloroplasts, with remobilization of the carbon and nitrogen
skeletons to growing sink tissues. The development of re-
productive structures governs the timing and onset of senes-
cence in some plant species, and in others such as Arabidopsis
the formation of reproductive structures at the ‘‘bolting’’ stage
prevents the generation of new leaves. Sugar accumulation
and sugar starvation induce senescence (49), as does a high
leaf C=N ratio.

The antioxidative system undergoes significant changes
with leaf age. The biosynthesis and content of ascorbate de-
creases (29, 340) and senescence is often accompanied by
a decrease in the activities of some antioxidant enzymes
and pyridine nucleotides (77, 193, 309, 340). Development-
dependent and stress-dependent changes in the expression of
APX and CAT genes have been described (454, 471, 472), as
well as altered sensitivities of APX1 to H2O2 (471). The re-
duction in antioxidant capacity might be important in the
activation of proteases such as Cys proteases, which tend to be
inhibited by reductants such as GSH (152). As described in
Section V.C.5, virtually no protein oxidation can be observed
in leaves as they enter senescence, suggesting that any oxi-
dized proteins are very rapidly degraded at this stage.

Studies on mutants provide direct evidence that redox
factors and antioxidants play important roles in plant senes-
cence. Novel roles for NAD in signaling and regulation of cell
longevity are being elucidated in microorganisms, animals,
and plants (179, 298, 420, 458, 461). One of a collection of old
(onset of leaf death) Arabidopsis mutants that show early leaf
senescence (195), old5 was identified as disrupted in quinoli-
nate synthase, the second enzyme of the bacterial and plant
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de novo pathway of NAD synthesis (365). The timing of se-
nescence is also altered in the ascorbate-deficient Arabidopsis
mutant vtc1 (28), but this may be due to the enhanced sus-
ceptibility of individual ascorbate-deficient cells to PCD (318).
Transgenic inhibition of the protein degradation machinery
by constitutive cystatin expression in tobacco favors delayed
senescence and alters lifespan (336). Similarly, Arabidopsis
mutants such as sag101, which is defective in an acyl hydro-
lase and ore9, which is lacking a functional F-box protein that
is part of the ubiquitin-dependent proteasome system, show
delayed senescence and extended longevity (444). Changed
ROS abundance may also be important in the regulation of the
WRKY6 and WRKY 53 transcription factors that are involved
in the orchestration of gene expression (52, 53, 417).

While redox processes are important in the orchestration of
senescence (287), this stage of development can in no way be
viewed as a time of uncontrolled oxidation. Indeed, given the
data on protein oxidation described above, the reverse appears
to be correct. Oxidative stress in mutants deficient in anti-
oxidative enzymes does not simply induce premature senes-
cence (341). It should be noted also that leaf senescence is
essentially a reversible process until the very final stage, which
is PCD. Leaf senescence is crucial for overall plant fitness and it
is essential for mobilization and recycling of nutrients from
mature leaves to the developing reproductive structures. The
reversibility of the first stages of the leaf senescence process is
probably a prerequisite for survival that enables old leaves to
re-green and become productive if the young leaves are eaten
by herbivores or are destroyed by disease.

B. Life or death: Which side is ROS on?

PCD is a pivotal biological process by which eukaryotic
cells die. Up to 70 billion human adult cells undergo apoptosis
each day. PCD is critical for normal development of multi-
cellular organisms, for example, in the development of the
embryo and vital organs as well as in general cellular ho-
meostasis. The controlled eradication of cells can be induced
by toxic insult (i.e., chemical damage) or physical disruption
of cells, but it is now also recognized that PCD processes are
under strict cellular control and mediated by complex sig-
naling pathways, in which the energy-generating reactions in
the mitochondrion (and in the chloroplasts in plants) are key
regulators. For example, PCD-inducing and cell damage-
controlled pathways feed back to the mitochondrion and in-
duce membrane permeabilization. In animals this is, in part,
under control of the Bcl-2 protein family, which contains
members with either pro- (e.g., Bax) or anti-apoptotic (e.g., Bcl-
2) functions. The mitochondrial inter-membrane space con-
tains redox-active and thus potentially cytotoxic molecules
such as cytochrome c that mediate the PCD process. On per-
meabilization of the membrane, cytochrome c is released
from plant and animal mitochondria to act as a cell death
effector. In animals, it is established that PCD pathways may
be caspase-dependent or independent, while in plants it has
been shown that PCD involves the activation of a suite of
different Cys and aspartic proteases (148, 149). This ultimately
leads to the well-recognized changes in cell morphology as-
sociated with PCD, including plasma membrane perturba-
tions, condensation, and fragmentation of nuclear chromatin,
and compaction of cytoplasmic organelles and cell volume
(see, for example, 136).

A flavoprotein called ‘‘apoptosis inducing factor’’ (AIF),
which is released from animal mitochondria, initiates caspase-
independent pathways of cell death. AIF was the first flavo-
protein shown to be involved in animal apoptosis and it has
yet to be demonstrated in plants. AIFs are FAD- and NAD(H)-
binding enzymes with a glutathione reductase-like fold that
are released from the mitochondrion in response to cell death
signaling, probably mediated by the nuclear enzyme PARP-1,
which is itself activated by DNA damage (2). AIF then induces
apoptosis by translocating to the nucleus and binding to
DNA, causing chromatin condensation, and by recruiting
nucleases to fragment DNA. A second flavoprotein AIF-M2,
which participates in human apoptosis, is located in the cell
cytosol, where it produces superoxide by NADPH-dependent
reduction of oxygen. AIF-M2 binds to DNA or can bind
NADPH but not both at the same time (145). Thus, ROS
production by AIF-M2 is inhibited in the DNA-bound form.
The steady state low level of superoxide=peroxide production
by AIF-M2 in the absence of DNA binding is considered to be
important for signalling cell viability. Its inhibition by the
presence of foreign or ‘‘leaked’’ host DNA in the cytoplasm is a
signal that cell death should be progressed. AIF or AIF-like
proteins could therefore act in plants as superoxide generators
that are necessary for cell survival signaling (145).

Over the last 10 years, our ability to generate mutants
throughout the genome in the model plant Arabidopsis (9)
has added considerably to insight from classical forward ge-
netics in this species. These genetic approaches have greatly
accelerated our understanding of how plants orchestrate cel-
lular redox homeostasis in relation to environmental and
metabolic cues. The analysis of a wide range of Arabidopsis
mutants has established that redox changes in the glutathione
pool and in components of the SA signaling pathway are re-
cruited in the orchestration of gene expression in the shoot,
particularly in response to factors such as the duration of il-
lumination (day length), the quantity and quality of absorbed
light, and EEE (25, 157, 185, 202–205, 260, 359). Moreover,
PCD observed in the Arabidopsis lsd1 mutant (Fig. 16) has
been linked to reduced stomatal conductance and to en-
hanced photorespiratory H2O2 production as well as redox
changes in the plastoquinone pool (259, 260). When the lsd1
null mutant was crossed with the chaos (cao) mutant that has a
reduced PSII antenna (213), the double mutants showed re-
duced lesion formation, illustrating the importance of pho-
tosynthesis to the PCD phenotype (259). While the pathways
of systemic acquired acclimation to high light appear to be
distinct from those orchestrating the pathogen response (359),
there are nevertheless points of interaction through certain
components as illustrated in Fig. 16. A number of pathogen
defense signaling components such as EDS1, PAD4, and
EIN2 have been implicated in the light-induced PCD pheno-
type (259, 302). Mutations in PAD4 and EDS1 block the lsd1-
dependent R-PCD phenotype that is triggered by light or
other triggers such as SA (185, 361). Nonphotorespiratory
conditions retarded the propagation of lesions in lsd1.
These results demonstrate the important role of the LSD1
protein in mediating cellular responses to metabolic ROS,
such as those generated through photorespiration following
the closure of the stomata.

LSD1 has been described as a ‘hub for the regulation of
transcriptional mediators of responses to various sources of
oxidative stress’ (200). The LSD1 protein binds AtbZIP10,
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which is a transcription factor that shuttles between the nu-
cleus and cytoplasm and which in the lsd1 mutant acts an
uncontrolled mediator of PCD (200). Interaction with the
LSD1 protein prevents AtbZIP10 movement into the nucleus
and hence suppresses PCD. The interaction of the LSD1 pro-
tein with AtbZIP10 and possibly other transcription factors
may also influence H2O2 scavenging capacity and interactions
with plant hormones such as ethylene (259).

The SA pathway has been implicated in the processes that
lead to acclimation to EEE (205, 259, 260). It is negatively
controlled by MAP kinase 4 (322, 361) and it is interfaced with
redox changes in the glutathione pool, leading to the expres-
sion of a suite of genes that are associated with pathogen re-
sistance (202, 205, 259). EDS1 and PAD4 have been implicated
in the amplification of ethylene and SA signals by processing
ROS (361). This pathway also incorporates a flavin-dependent
monooxygenase (FMO1) that positively regulates the EDS1
pathway and NUDT7, a member of the cytosolic nudix hy-
drolase family, which is a negative regulator of EDS1 signaling
(Fig. 16). While the SAA signaling pathway that facilitates the
pre-acclimation of photosynthetic tissues to high light is dis-
tinct from that of pathogen-related systemic acquired resis-
tance (359), these studies show that PAD4, EDS1, and MPK4
interact with LSD1 in signal pathways, leading to PCD (434)
and with some responses to EEE (259, 260).

IX. Practical Applications

A. Shoring up the ROS defenses

The last 20 years have witnessed a veritable revolution in
our concepts regarding the functions of ROS and redox sig-
naling in plants, particularly in relation to growth and cell
division. Of necessity, this has led to a change in mindset with
regard to the potential applications of this new knowledge
and insight. Early findings that ROS are often increased in
plants exposed to environmental stresses led plant scientists
to attempt to improve the stress tolerance in model and crop
species by transforming plants with genes for antioxidant
enzymes targeted to the chloroplast or cytosol (for reviews,
see 8, 121, 123). Over the years, such attempts have met with
mixed results and this is perhaps not surprising given the
complexity of ROS and antioxidant functions in plants (123).
It is important to remain mindful of the fact that studies
with negative results tend either not to get published or to
obtain a lower publication profile. Similarly, the literature
studies that report enhanced stress tolerance resulting from
the overexpression of genes encoding antioxidative enzymes
are often rather simplistic in design and execution, following
a rather standard pattern of analysis. For example, most re-
ports have only been undertaken in the laboratory on plants
grown under controlled environment conditions and often
they have tested only the responses of the transgenic plants to
artificially-induced oxidative stress induced by pro-oxidant
chemicals such as methyl viologen. For example, tobacco
plants overexpressing a bacterial CAT targeted to chloroplasts
showed enhanced methyl viologen tolerance with a signifi-
cantly reduced capacity to inhibit bacterial growth (276, 330).
From such studies, a substantial body of literature evidence
has accrued demonstrating that constitutive overexpression
of one or more antioxidative enzymes results in beneficial
results on stress tolerance. In our own hands, for example,
overexpression of GR in the chloroplast resulted in increased

tolerance to cold-induced photoinhibition in poplar (126), and
a lower rate constant of PSII photoinhibition in tobacco (411).
Similarly, the constitutive expression of a late embryogenesis
protein LEA, whose expression was enhanced by oxidants
and ABA, was shown to confer enhanced tolerance to H2O2 in
yeast and in Arabidopsis (281). The protective effect arising
from overexpression of antioxidative enzymes in the chloro-
plast has been explained by effects on the PET, suggesting that
enhanced antioxidant capacity is better able to maintain the
photosynthetic apparatus in a more oxidized state (216, 217).

B. Modifying ROS signaling pathways:
Shooting the messenger?

Reinforcement of antioxidative systems would seem to be
the best strategy if the negative effects of oxidative stress
are due to inevitable multiple molecular modifications that
cause deleterious effects on growth, development, or yield. In
this case, the only way to stop the damage is by improved
policing of the culprits (ROS) that are accidentally over-
produced in response to stress. More success than hitherto
achieved may come by modifying expression of whole suites
of genes, approaches that are likely to become more feasible as
key transcription factors or other regulatory components are
identified. Another approach recently reported is engineer-
ing multifunctional hybrid enzymes (457). Entirely different
possibilities are opened up if links between stress conditions
and their effects are mediated via ROS interacting with a
limited number of signaling components. As we have em-
phasized in this review, ROS have multiple effects on plant
function, some of which may be considered desirable or
not, depending on the context. Intracellular oxidative stress
often results in slower growth and=or cell death. Recent data
obtained with Arabidopsis clearly suggest that the most
physiologically relevant aspects of these effects are highly
conditional and can be genetically modulated (341, 428). Al-
though such findings are promising, further work is re-
quired to establish whether they are potentially applicable to
improving crop performance in agricultural conditions.

C. From the lab to the field

The growing need to boost crop production for food, fiber,
and bio-energy, coupled to the dual requirements for pre-
dictability of yield and agricultural sustainability is a key
driver for fundamental and applied research on plants. Cur-
rently, mankind is faced with many problems such as the loss
of fertile lands, caused in part by intensive conventional ag-
riculture that depletes natural resources, the potential nega-
tive impacts of increasing environmental stresses (particularly
drought) associated with climate change, and an increasing
world population. The situation is particularly serious for
developing countries such as in Africa, where the population
has more than doubled between 1975 and 2005, rising from
335 to 751 million, but the rise in population has not been
matched by concomitant increases in food production. More-
over, a severe drought cycle is experienced every 10 years in
many countries in the eastern Africa region, while a moderate
drought is experienced once in every 5 years. In 2006, for
example, 27 sub-Saharan African regions experienced severe
famine due to drought. In that year alone, 200 million people
were left malnourished. According to the International Food
Policy Research Institute (http:==www.ifpri.org=December
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2008), drought linked to poor rainfall was the major cause of
this malnourishment. The International Federation’s Disaster
Relief Emergency Fund (DREF) estimated that in the short
rainy season of 2006, 3.5 million people in Kenya were in need
of food aid due to persistent droughts and delayed rains. The
need for improved crops that will perform better and more
reliably under stress conditions, particularly water deficit, is
therefore real and, in fact, has never been more urgent. For
these reasons, genetic modification of crop plants to introduce
desirable traits such as stress tolerance and nutritional en-
hancement are increasingly becoming recognized as impor-
tant weapons in the arsenal to improve and defend food
security. Evidence in support of this trend also comes from the
fact that 23 countries planted genetically-modified ‘‘biotech’’,
crops in 2007, despite continued consumer resistance. More-
over, the increasing percentages of current crops such as
maize (14%), soybean (60%) cotton (28%) and canola (18%)
that are genetically modified reflects increasing recognition
that promising technologies are essential to boost plant
productivity and food production (http:==www.isaaa.org,
December 2008).

In contrast to the extensive literature reporting the effects of
laboratory experiments, very few studies have been under-
taken in the field, where so far increases in antioxidant en-
zyme capacity in transgenic plants has been found to have
little beneficial effect in terms of stress tolerance (218). Hence it
is crucial to address the question of the next approaches, given
that field studies on transgenic plants are likely to be limited
by the administrative complexities encountered in many
countries in gaining permission for such tests. Recent years
have seen an explosion in the numbers of new genes associ-
ated with stress tolerance traits, and these are being exten-
sively tested as potential breeding markers, as is antioxidant
defense strength. Characterization of gene function is des-
tined to remain largely in the domain of the laboratory, even
though increasingly large numbers of transgenic crops with
valuable traits such as enhanced herbicide tolerance or insect
resistance are now being grown in the field.

D. Crops and human health

The epidemiological evidence that consumption of fruit
and vegetables decreases the frequency of the most important
diseases of the developed world, together with general die-
tary (five-a-day) advice from governmental organizations,
has led to increasing emphasis on the identification of plant
dietary compounds that lead to human health benefits. This
has led to intensive research efforts, not only to characterize
the effects of different groups of plant secondary metabolites
on animal cell viability and cellular detoxification systems,
but also the extensive characterization of the pathways of
plant secondary metabolism (see, for example, The Plant
Journal, Special Issue on Harnessing Plant Biomass for Bio-
fuels and Biomaterials, Vol. 54, 2008). While the simple con-
cept of a few years ago of a clear causal relationship between
oxidative damage and animal aging is giving way to a much
more complex picture that views aging as a failure to recycle
damaged cells and macromolecules, the notion that the
antioxidant content of plant foods is largely beneficial in
promoting health and well being, as well as maintaining
youthfulness, remains fixed in the philosophy of human nu-
trition. Antioxidants remain a key component of cellular de-

fenses against protein damage and detoxification systems for
xenobiotics and other metabolites. For example, glyoxalase I,
which has been shown to have anti-aging and related pro-
tective effects of in animals and plants, requires glutathione.

In many countries, the general consumption of fruit and
vegetables falls well below the average recommended intake
of 400 g per day. Hence, enhancement of micronutrient con-
tent in food crops by means of biotechnology and biofortifi-
cation procedures is not only a major challenge in fighting
deficiencies but also in ensuring that people are better pro-
tected against the major diseases of the developed world.
Plants accumulate and maintain levels of ascorbate, gluta-
thione, and tocopherol that are commensurate with their
growth conditions, and environmental parameters such as
light are now known to have a major effect on the accumu-
lation of low-molecular-weight soluble antioxidants.

Whether the goal is to enhance plant stress resistance or
nutritional content, approaches such as the identification and
association of appropriate quantitative trait loci (QTL) offer an
alternative to transgenic techniques. To date, very few QTLs
that govern the abundance of antioxidants or potentially
beneficial secondary metabolites have been described. How-
ever, the rapid increase in our knowledge of the underpinning
environmental and developmental controls of the genes that
govern the biosynthesis, metabolism, and accumulation of
such compounds, dictates that plant breeding programs will
soon be able to use appropriate genetic markers for appro-
priate enhancements, for example, of the vitamin C levels in
fruits such as black currants.

Engineering plants to overproduce antioxidants such as
ascorbate, glutathione, and tocopherol has also been moder-
ately successful (see, for example, the Physiologia Plantarum
Special Issue on Nutrigenomics: Vol.126, 2006). The bio-
synthesis of vitamins A and E or their precursors has been
characterized in detail, leading to new approaches for en-
hancement by crop management as well over-expression of
biosynthetic enzymes. The production of ‘‘golden rice’’ en-
riched in b-carotene (provitamin A) was a pioneering step in
the field. Transgenic approaches have led to a >20-fold in-
crease in b-carotene content of the rice grain compared to the
original line (45). While this technology has the potential to
pave a new way forward in controlling sight defects and other
vitamin A-related disorders, it remains to be seen whether
public acceptance of transgenic crops will increase to the ex-
tent required to realize the potential benefits of such advances
in basic science capability.

X. Conclusions and Perspectives

The field of redox biology has recently witnessed a dra-
matic reappraisal of the function of reactive oxygen species
(ROS) and antioxidants. For many years considered as ‘‘mo-
lecular hoodlums’’ to be suppressed or policed by the anti-
oxidant system, ROS, like the low molecular weight
antioxidants, are now considered to be dynamic information-
rich signaling molecules. ROS and antioxidants govern cel-
lular redox state, which in plants is a ‘‘convergence regulator’’
linking biotic and abiotic stress responses to the control of
growth and programmed cell death. Low molecular weight
antioxidants such as ascorbate, glutathione, and tocopherol
fulfill functions that go far beyond their ROS-scavenging ac-
tivities, particularly in cell signaling and the regulation of
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gene expression. However, the concept persists that ROS ex-
ert their principal effects through chemical toxicity that causes
oxidative damage to proteins, lipids, and DNA. While the
biochemistry by which ROS oxidize cellular components can
potentially be described in unambiguous terms, the com-
plexity of living cells means ‘‘damage’’ verses ‘‘signaling’’
paradigms are less easily defined. However, the choice of
paradigm governs our concepts, understanding, and appre-
ciation of the significance of the underlying biochemical
mechanisms and their physiological importance.

We have described here the concepts of cellular redox
state and homeostasis in relation to plant fitness and re-
sponses to environmental challenges, with particular em-
phasis on oxidant–antioxidant relationships and signaling.
The ROS–antioxidant interaction is viewed as a convergence
hub for signals derived from metabolism and the environ-
ment. While we have not discussed NO synthesis and sig-
naling in plants, as this topic has recently been reviewed (437),
we remain mindful that the production of ROS and NO in
response to hormonal and stress triggers is closely linked in
plants (466), as may also be ROS and CO signaling in stress
responses (450). Since there is no evidence that peroxynitrite is
harmful in plants, even at millimolar concentrations (76),
processes such as ABA-induced H2O2 production leading to
NO generation in leaf mesophyll cells (466) and in stomata
(47) must be viewed as signaling events involved in the or-
chestration of specific responses.

Such generic information is also important in the global
context of the transformative bioeconomy. After several de-
cades of apparently unlimited food supplies, at least in the
most technologically advanced nations, the world is faced
with the uncertainties of climate change, with rising global
temperatures and energy prices, and an ever-increasing
population. The need for food and energy security is focusing
increasing attention on the role that agriculture can play in
providing human food, animal feed, and fiber, within the
constraints of renewable energy sources and environmental
values. The photoautotrophic and sessile nature of plants
means that, perhaps more than for many other types of or-
ganism, their redox biology is inextricably associated with
their growth and defense responses, thus determining the
nutritional quality of plant products. Our increasing under-
standing of how plants have not only mastered but also suc-
cessfully exploited oxygen chemistry and light-driven redox
metabolism will undoubtedly be a part of any sustainable
solutions achieved to the major challenges of the 21st century.

As well as practical applications targeted to specific anti-
oxidants, the emerging concepts of how ROS are involved in
the control of plant growth and defense responses opens new
avenues of potential practical development, with the targeted
upregulation of suites of appropriate genes. Emerging areas
of intensive interest include the PET and RET signaling
pathways and epigenetic and post-transcriptional regulation
of gene function, including small interfering RNAs, DNA
methylation, and microRNAs. The identification of new roles
for proteins such as the DELLAs, which regulate plant growth
and redox-related defense processes that determine ROS ac-
cumulation, makes them attractive targets for practical ap-
plications. Similarly, this research ushers in new studies in
plant biology focusing on areas that had not previously been
associated with redox biology such as the role of gibberellins,
which determine the lifetime of the DELLA proteins, and

other signals such as those mediated by photoreceptors. Fi-
nally, the exciting discovery that plants exposed to stresses
that enhance cellular oxidation inherit the memory of stress
and that exposure to stress has to be persistent to maintain the
same level of acclimatory responses, opens new frontiers of
investigation, not only into the mechanisms that regulate the
rate of homologous recombination and global genome
methylation, but also of how these processes are integrated
with cellular redox homeostasis.
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Testerink C, Munnik T, Deák M, Koncz C, and Bögre L. A
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430. Wakao S, André C, and Benning C. Functional analysis of
cytosolic G6PDHs and their contribution to seed accumu-
lation in Arabidopsis Plant Physiol 146: 277–288, 2008.

431. Wang P and Song CP. Guard cell signalling for hydrogen
peroxide and abscisic acid. New Phytol 178: 703–718, 2008.

432. Wasternack C, Stenzel I, Hause B, Hause G, Kutter C,
Maucher H, Neumerkel J, Feussner I, and Miersch O. The
wound response in tomato. Role of jasmonic acid. J Plant
Physiol 163: 297–306, 2006.

433. Wheeler GL, Jones MA, and Smirnoff N. The biosynthetic
pathway of vitamin C in higher plants. Nature 393: 365–369,
1998.

434. Wiermer M, Feys BJ, and Parker JE. Plant immunity: The
EDS1 regulatory node. Curr Opin Plant Biol 8: 383–389, 2005.

435. Wildermuth MC, Dewdney J, Wu G, and Ausubel FM.
Isochorismate synthase is required to synthesize salicylic
acid for plant defence. Nature 414: 562–565, 2001.

436. Willekens H, Chamnongpol S, Davey M, Schraudner M,
Langebartels C, Van Montagu M, Inzé D, and Van Camp
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